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Many structural mechanics problems, such as post-buckling of elastica, involve determining multi-equi-
librium states of a nonlinear system. Typically, the stable equilibrium states are found by searching for
minima of the potential energy function subjected to some constraints. In this paper, the method of
genetic algorithm combined with the quasi-Newton method is applied to search for the multiple minima
of the strain energy of various elastica problems. The proposed hybrid methodology is relatively straight-
forward to implement and is adopted to study post-buckling behaviour of planar elastica modelled as
multi-link systems for various boundary conditions and sidewall constraints.
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1. Introduction

In structural mechanics, many nonlinear problems such as elas-
tica and post-buckling of elastic structures involve a category of
geometrical nonlinear and material elastic systems. Motivated by
the development of long-span space structures and non-terrain
based deployable structures, interests in understanding and mod-
elling the large displacement behaviour of flexible structures have
grown. Thompson and Hunt presented a comparative study among
continuum analysis, discrete system analysis and finite element
analysis [1]. Murakawa et al. utilized the complementary energy
principle and an associated hybrid finite element method to ana-
lyze stability of structures [2]. Anifantis and Dimarogonas studied
the post-buckling behaviour of transverse cracked column [3]. In
their study the buckling model of the cracked column is repre-
sented using a flexible rotational spring (cracked section) to join
two uncracked segments. Lately, nanotubes and DNA molecules
have also been represented by structural models with geometrical
nonlinearity and material elasticity [4,5]. All the above stated
structures can be modelled as multi-link systems. For such nonlin-
ear elastic problems, static equilibrium configuration of the system
is one that possesses stationary strain energy (local minimum), as
stated in Bernoulli’s principle. Since the system is nonlinear, multi-
ple configurations corresponding to different energy levels can ex-
ist under the same geometric constraints. Searching and
identification of multiple configurations is often necessary for bet-
ter understanding of the system.
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Nevertheless, conventional Newton-Raphson iteration tech-
niques face numerical difficulties especially when the equilibrium
path approaches the limit point. To study post-buckling behaviour
beyond the limit point, Riks proposed an analysis technique
(known as Riks method or the arc length method) to search the
equilibrium path in the load-displacement space [6]. This tech-
nique has been successfully implemented in the finite element
method [7-10]. The arc length method defines load as an addi-
tional unknown that can be solved by incorporating a constraint
in terms of displacement in the previous step, the proportional
load factor, and the arc length. Several early implementations in
the finite element method incorporating arc length constraints in-
clude tangent plane arc length [6] and spherical constant arc
length [8], and if necessary, constant increment of external work
method may be used as well [7,9]. A usual requirement for post-
buckling analysis by the arc length method is the introduction of
imperfection, which can be obtained by linear eigenvalue buckling
analysis. In this way, bifurcation point can be passed to provide a
continuous searching space for a particular buckling mode. The
arc length method, however, cannot directly obtain a solution for
a specified load or displacement as they are treated as unknown
during the solution procedure. For general post-buckling problems
involving complex contact conditions, the application of the arc
length is not straightforward [10] though there have been success-
ful attempts in solving specific contact problems [11,12]. The
advantages and drawbacks of the arc length method have been
discussed in Refs. [13,14]. Against this backdrop, an alternative
approach is explored in this paper.

A hybrid numerical strategy is proposed combining genetic
algorithm (GA) for constrained minimization problems, which
was proposed by Moerder and Pamadi [15], and quasi-Newton
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Nomenclature

a distance between two ends of elastica

b parameter defining the stiffness characteristic of side-
wall

C a user-defined penalty weight

dq, dy distances from sidewalls to x axis

D displacement of the moving end in x direction

E Young’s modulus

1 moment of inertia of the cross-section

K; spring constant of elastic rotational spring connecting

L total length of elastica

&z Lagrangian function

M moment

P, critical Euler buckling load

Si ith segment length

SE strain energy

U objective function

w maximum deflection

i relative angle of adjacent two segments in Model 1, and
slope at the ith node in Model 2

P local minimum

1 Lagrange multiplier, which equals reaction force in x
direction

)2 Lagrange multiplier, which equals reaction force in y
direction

method to study the large displacement behaviour of various mul-
ti-link systems. There is no premise for introduction of buckling
mode. The hybrid strategy is illustrated in the context of planar
elastica. Numerical results are also compared with the analytical
solutions available for uniform elastica [16,17].

While many past researchers employed analytical elliptic inte-
gral or numerical shooting method, the numerical strategy pre-
sented in this paper is relatively straightforward and easy for
implementation to study the post-buckling behaviour of elastic
system subjected to different boundary conditions and constraints.
Pin-pin elastica, clamp-pin elastica, clamp-clamp elastica, pin—-pin
elastica subjected to two rigid frictionless sidewalls and pin-pin
elastica with transverse cracked section are analyzed using the
proposed strategy. In addition, the snap through of a hinged
right-angle frame subject to fixed point load, which has been stud-
ied by Argyris et al. [18] and Simo et al. [19], is modelled with this
strategy.

2. Genetic algorithm and quasi-Newton method

In recent years, the use of GA has gained popularity in many
fields including structural engineering. GA embraces the doctrine
of survival of the fittest and has two major operators, i.e. crossover
and mutation which are keys to the natural evolution and selection
in the biological world. This probabilistic population-based search
strategy has the advantage of having high likelihood of finding the
global minimum. However, GA is generally considered suitable for
unconstraint minimization problems. For constraint satisfying
problems (CSP), which are common in many engineering problems,
a key issue is to employ the constraint function to enforce the con-
tact conditions [20]. One common approach is to convert the origi-
nal problem into an unconstrained one by constructing a weighted
penalty function, or a Lagrangian function, or both. The penalty can
be constant or adaptive. If a constant penalty weight is used, the
magnitude of the penalty can significantly affect the search proce-
dure. If the weight is too “heavy”, many individuals in the mating
pool that are not strictly compatible with the constraints will be-
come extinct too early in the GA selection procedure. The popula-
tion will thus lose its diversity resulting in premature convergence
to a local optimal point. If the penalty is too “light”, it will be com-
putationally inefficient to converge to the desired constrained
solution. Therefore, the choice of weight largely depends on the
problem and user’s experience, and re-tuning of the weight is often
inevitable. In this paper, an adaptive penalty function is utilized.
The fitness evaluation function is composed of the gradient of
the Lagrange function and the constraints. Lagrangian multipliers

are evaluated from the least square condition of the local mini-
mum [15].

Due to its stochastic nature, the results of GA search are often
not guaranteed for problems with a large number of unknowns
and nonlinear constraints. The difficulty is twofold. First, the search
with GA alone is not effective to yield good result when there are
many unknowns. Second, if high resolution of the search space is
required to produce accurate search, the computational cost will
be prohibitive. On the other hand, the quasi-Newton method based
on gradient information of the problem is efficient in finding local
minimum provided that a promising initial guess is presented. We
combine these two methods in our search for the multiple local
minima of CSP. To this end, penalty functions and a memory list
are employed to propel the searching procedure away from the
neighbourhood of previously obtained solutions. This is necessary
to provide promising candidates in the neighbourhood of a differ-
ent local minimum for the quasi-Newton method to continue the
search. The quasi-Newton method updates the variables and mul-
tipliers simultaneously, and BFGS (Broyden, Fletcher, Goldfarb, and
Shanno) formula is employed to approximate the evaluation of the
inversion of Hessian matrix [21].

Lagrangian function has the following form:

LW, 4) =U() —hi (1)

where U, ¥, h, 1 are the objective function, variables, equality con-
straints and Lagrange multipliers, respectively. The necessary con-
dition for a local minimum is that the first order gradient of
Lagrange function at a local minimum equals to zero, i.e.

VLW i) = Uy(§) —hy(4)i=0 )

where subscript indicates differentiation, and y* and 1* are the lo-
cal optimum and corresponding Lagrange multipliers. In this ap-
proach, the Lagrange multipliers are not treated as independent
variables. From Eq. (2), we can estimate the value of Lagrange mul-
tiplier as:
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where h;j(y)(j=1,...,m) is one of the equality constraints of the

problem, and m is the number of equality constraints. The operator
+ denotes Moore-Penrose inversion or pseudo-inversion defined as
hi, = (h)h,) "'k}
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