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a b s t r a c t

Many engineering structures consist of specially-fabricated identical components, thus their topology
optimizations with multiobjectives are of particular importance. This paper presents a unified optimiza-
tion algorithm for multifunctional 3D finite periodic structures, in which the topological sensitivities at
the corresponding locations of different components are regulated to maintain the structural periodicity.
To simultaneously address the stiffness and conductivity criteria, a weighted average method is
employed to derive Pareto front. The examples show that the optimal objective functions could be com-
promised when the total number of periodic components increases. The influence of thermoelastic cou-
pling on optimal topologies and objectives is also investigated.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering structures are often devised with two significant
features. Firstly, most structures are expected to function in differ-
ent physical conditions; and secondly, many structures comprise
some identical components or parts for mass production, storage
and transportation benefits. This is why the structural optimization
of outstanding multifunctional objectives with periodic compo-
nents is of particular importance in engineering context.

Over the last two decades, topology optimization has been
developed as an effective tool to seek the optimal configuration
of a structure for multidisciplinary criteria in a specified design do-
main [1–5], in which substantial efforts have been devoted to dif-
ferent algorithms, formulations and solutions to various individual
criteria, ranging from mechanical [1,2,4–6] to thermal [7–9], per-
meable [10,11] and magnetic [12] objectives. Some attempts have
been made to optimize various coupled multiphysical systems, e.g.
piezoelectric [13,14], thermoelastic [15–19] and thermoelectrical
[20,21] designs.

One of the main challenges confronted in topology optimization
is the involvement of more than one design objective, in particular,
those competing criteria [22,23]. It is often difficult to achieve all
the design objectives simultaneously and certain trade-off must
be made during the design. To cope with this issue, an accepted
alternative is to derive a Pareto optimum, where a Pareto front is
generated and the multiple objectives are optimized in a compro-
mise manner. In this respect, the linear weighting function scheme
(i.e. arithmetic average) has been extensively applied to search for

multiobjective optimum provided that the Pareto front is convex. It
is noted that the thermoelastic problems have been often exempli-
fied to demonstrate such design features. Li et al. [24] and Kim
et al. [25] adopted the weighting factor method to combine ther-
mal stress and heat flux for a unified design criterion, and showed
that varying the weights led to different topologies. de Kruijf et al.
[26] incorporated the stiffness and conduction criteria into a single
cost objective for 2D structural and material designs. However, a
more thorough study is still needed, particularly to explore the
relationship between multiobjective optimal topologies and corre-
sponding Pareto fronts.

Another key issue that remains to be under-investigated is the
topology optimization for periodic structures that comprise a finite
number of identical components or parts. Unlike the periodic
materials whose base cells are generally many orders smaller than
the materials sample considered [27,28], the sizes of periodic com-
ponents are often comparable to the entire structural system. In
this scenario, external boundary and loading conditions could sig-
nificantly affect each component to different extents, making their
performances inhomogeneous [29]. Thus the typical homogeniza-
tion technique [30] may not be applicable for relating the global
properties to base cell (component) characteristics. In other words,
the inverse homogenization algorithms [27] developed for periodic
material design may be inapplicable. To tackle this problem, Zhang
and Sun [31] developed a two-level design approach by combining
the macroscopic optimization with microscopic optimization.
More recently, Huang and Xie [32] established a mono-scale
approach to the optimization of periodic structures, by simply
averaging the sensitivities at corresponding locations of each com-
ponent to maintain the structural periodicity. In these two articles,
however, only a simple stiffness criterion has been considered.

0045-7949/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruc.2009.10.003

* Corresponding author. Tel.: +61 2 9351 8607; fax: +61 2 9351 7060.
E-mail address: q.li@usyd.edu.au (Q. Li).

Computers and Structures 88 (2010) 806–811

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

http://dx.doi.org/10.1016/j.compstruc.2009.10.003
mailto:q.li@usyd.edu.au
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


This paper aims to develop a unified procedure for 3D multiob-
jective topology optimization of finite periodic structures. Without
loss of generality, the minimizations of mechanical and thermal
compliances are adopted as the design objectives herein. A number
of examples are presented to explore the topologies, Pareto fronts
and assembly patterns.

2. Statement of the problem and sensitivity analysis

The finite element solutions to elastic and thermal governing
equations determine the displacement field u and temperature
field /, which allow us to assess the mechanical and thermal per-
formances of a specific structure in terms of the compliances. It is
deemed that the lower the mechanical and thermal compliances,
the better the corresponding performances. In a multiobjective
framework, the design problem can be accordingly formulated in
terms of weighting factors ws and wc , as
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where fs and fc are mechanical and thermal compliance objectives,
respectively. NE denotes the total number of elements, Vt the vol-
ume constraint and qmin represents the lower limit of design vari-
able qe (relative density), preventing finite element analysis from
singularity [33–35]. ue

s ;u
e
c and /e are the elemental displacement

vectors due to the mechanical and thermal loadings and elemental
temperature vector, respectively. Ke

s and Ke
c are the elemental stiff-

ness and conductivity matrices. C�s and C�c are the maximum struc-
tural and thermal compliances which are used to normalize these
two different objective functions to a range of 0–1. ps and pc are
two parameters used in the SIMP model to penalize intermediate
densities towards a 0–1 design [1]. ws and wc , which are chosen
such that the sum equals unity, i.e. ws þwc ¼ 1, represent two
weighting factors to control the proportion or emphasis between
mechanical and thermal objectives.

The sensitivity of ith element for the bi-objective optimization
problem defined in Eq. (1) can be given as,
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It should be noted that in the finite periodic structure, the difference
of two physical fields in different components make the sensitivities
non-periodic, thereby leading to a non-periodicity of different com-
ponents after optimization. To avoid such a paradox, Huang and Xie
[32] proposed a simple yet effective method, in which all the sensi-
tivities at the corresponding locations of different components are
averaged as
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where ð�Þi;j denotes the ith element in the jth component and
NP ¼ nx � ny � nz is the total number of components. By doing so,

a unified sensitivity of different components is provided, which al-
lows us to optimize the topologies of different components in a con-
sistent way. Consequently, the structural periodicity can be retained
via such a variable-linking technique as indicated in Eq. (3), in
which the elemental densities at corresponding locations are pre-
served to have the same value, thereby maintaining the periodicity
during the design.

3. Results and discussion

In this section, we will present three demonstrative examples to
illustrate the bi-objective designs with or without coupling effect
for both conventional (1 � 1 � 1) and finite periodic topology opti-
mizations. All the 3D design domains are discretized into unit cu-
bic elements and the initial density fields are of uniform material
distribution where volume fraction is equal to the prescribed
one. In this paper, the penalty factors used in the SIMP models
for the Young’s modulus and conductivity are both set as
ps ¼ pc ¼ 3 [36]. During the optimization process, it will not be
considered convergent until the maximum density change in any
element is less than 0.1% in 10 consecutive iterations.

3.1. Conventional structural designs with bi-objectives

As shown in Fig. 1(a), the design domain is evenly heated at all
nodes in this example. At the center on the bottom surface, there is
a heat sink, whose temperature is kept to be zero degree. Four cor-
ners of the bottom surface are kinematically fixed and a unit force
is applied along the x-axis at the center of the upper surface. Due to
the double-symmetry of the structure, we only analyze a quarter of
the design domain that is discretized into 80 � 40 � 40 unit cubic
elements. The Young’s modulus, Poisson’s ratio and the conductiv-
ity of solid materials are set to 1, 0.3 and 1, and the constraint of
volume fraction is 30%, respectively.

By varying ws from 1 (the full stiffness design) to 0 (the full con-
duction design), the optimal structural topologies are generated as
shown in Fig. 1. It is interesting to see how the mechanical and
thermal objectives compete with each other and make significant
influence on the topological designs. In the full stiffness design
(ws ¼ 1, Fig. 1(a)), the four bars connect the fixed corner boundary
with the loading point to best support the external mechanical
force. On the other hand, in the full conduction design (ws ¼ 0,
Fig. 1(b)), the material is mostly distributed near the heat sink
and spread out along a doubly-symmetric tree-like configuration
with numerous fine twigs. In this case, there is no any connection
between the kinematic boundary (the four bottom corners) and the
mechanical loading point. However, if slightly increase the stiff-
ness weight (e.g. ws ¼ 0:001), an evident connection near the load
point can be observed as shown in Fig. 2(a). Further increase in the
stiffness weight will strengthen the connection of loading point to
kinematic boundary and weaken the heat dissipation from the heat

Fig. 1. Two extreme cases in conventional bi-objective structural designs.
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