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h i g h l i g h t s

• A relation for self and collective diffusion coefficients in binary melts is derived.
• The relation naturally reveals cross-correlation effects in collective diffusion.
• Application of the relation for interpretation of experimental data is demonstrated.
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a b s t r a c t

The interrelation between the kinetics of single-particle (tracer) and collective diffusion
in a binary melt is investigated theoretically within the framework of the Mori–Zwanzig
formalism of statistical mechanics. An analytical expression for the Onsager coefficient for
mass transport and two self-diffusion coefficients of species in a binary melt is derived
using analysis based on the generalized Langevin equation. The derived expression natu-
rally accounts for manifestation of microscopic (dynamic) cross-correlation effects in the
kinetics of collective diffusion. Hence, it presents an explicit extension of the well-known
Darken equation which is currently often used for expressing collective interdiffusion in
terms of the two self-diffusion coefficients. An application of our analysis for interpretation
of recent experimental data on the interrelation between the kinetics of single-particle and
collective diffusion in Al-rich Ni–Al melts is demonstrated.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

At present, reliable experimental data for the mass transport coefficients in liquid alloys are very limited. This is due to
both high cost and many technical difficulties related to the diffusion measurements in the liquid state [1–8]. However,
the knowledge of these coefficients is of significant importance for engineering the crystalline microstructure during
solidification of the alloys [9,10]. As a result, the mass transport coefficients often remain the key assumptions in the phase
field based modelling of the complex branched morphologies exhibited by dendrites during solidification from melt [9,10].
Therefore, it is highly desirable to establish theoretical relations between different mass transport coefficients in order to
enable a quantitative prediction of unknown coefficients from those that can be measured most reliably in experiment [11].

It is well known that for a binary system the so-called Darken equation [12] gives a famous link between the two tracer
diffusion coefficients, D1 and D2, and the interdiffusion coefficient, Dc , as

Dc = Φ (c2D1 + c1D2) , (1)
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where c1 and c2 (c1 + c2 = 1) are the atomic (mole) fractions of species 1 and 2, respectively, and Φ is the thermodynamic
factor. The thermodynamic factorΦ is related to the second derivative of themolar Gibbs free energyG/N with respect to the
composition at constant temperature T and pressure P , as Φ =

c1c2
kBT

(
∂2(G/N)

∂c21

)
T ,P

=
c1c2
kBT

(
∂2(G/N)

∂c22

)
T ,P

, where N is the number

of atoms in the system volume V and kB is the Boltzmann constant. This equation was originally introduced in 1948 to
describe data on interdiffusion in a binary crystal coupled via the vacancy mechanism primarily on the basis of macroscopic
arguments. Later, in 1961, Manning [13] put forward an extension of the Darken equation, in the general context of chemical
diffusion in crystals, to the form

Dc = ΦS (c2D1 + c1D2) , (2)

ingeniously demonstrating that a certain correction factor of the microscopic kinetic origin, S, must be included. As a result,
Eq. (2) is sometimes called the Darken–Manning equation [14].

From the other side, using the Onsager formalism of the thermodynamics of irreversible processes [15,16], it can be
generally shown [17] that for an isotropic binary melt the ratio Dc/Φ is related to the phenomenological coefficient Lcc (or
renormalized coefficient L̃cc), which links the interdiffusion flux to conjugated thermodynamic force, as

Dc

Φ
=

VkBT
Nc1c2

Lcc = L̃cc . (3)

Therefore, generally speaking, the correction factor S characterizes cross-correlation effects that arise in collective diffusion
process.

Thus, as can be seen from Eqs. (2) and (3), the central goal of a microscopic kinetic description of mass transport in a
binary system is to find a reliable expression (i.e., a more sophisticated alternative to the Darken equation) for the Onsager
kinetic coefficient L̃cc for mass transport. In particular, concerning the diffusion kinetics in binary mixing melts, which
exhibit chemical ordering, we should note that both recent experimental measurements [8] and molecular dynamics (MD)
simulations [2,11,18] indicate that the correction factor S is expected to be generically less than unity, S ≲ 1, in such systems.

In this communication, making use of the formalism developed by Zwanzig [19,20] and Mori [21,22], we present an
analysis to derive an exact analytical expression for L̃cc (and S) for a binary melt. This expression allows us to suggest a
concept of a binary liquid random alloy for which the correction factor S = S0 ≤ 1 can be expressed only in terms of: (i) the
ratio of the tracer diffusion coefficients D1/D2, (ii) the ratio of the atomic masses m1/m2, and (iii) the alloy composition c1
(or c2). We argue that for binary mixing melts exhibiting chemical ordering (such as Ni–Al melts [11]) the correction factor
should typically be S < S0, while for binary melts where precursors of liquid–liquid demixing are important (such as Cu–Ag
melts [11]) the correction factor should be S > S0. Furthermore, we point out that in thermal equilibrium the correction
factor should be within the range 0 ≤ S ≤ 2S0, which is constrained by the energy of thermal fluctuations (thermal energy).
Finally, we employ our theoretical findings for interpretation of recent experimental data [8] on the correction factor to the
Darken equation in Al-rich Ni–Al melts.

2. Theoretical treatment

Let us consider, at thermal equilibrium, an isotropic binary liquid alloy consisting ofN1 atoms ofmassm1 andN2 atoms of
massm2 enclosed in a fixed volumeV (N = N1+N2, c1 = N1/N and c2 = N2/N). Next, one canwrite the generalized Langevin
equations for the velocities v1i (t) (i ∈ [1 . . .N1]) and v2j (t) (j ∈ [1 . . .N2]) of arbitrarily tagged atoms of species 1 and 2,
conventionally decomposing the total forces f1i (t) and f2j (t) acting on the tagged particles according to the Mori–Zwanzig
formalism [19–23], as

m1
dv1i (t)

dt
= f1i (t) = −m1

∫ t

0
K1
(
t − t ′

)
v1i
(
t ′
)
dt ′ + R1i (t) , (4)

m2
dv2j (t)

dt
= f2j (t) = −m2

∫ t

0
K2
(
t − t ′

)
v2j
(
t ′
)
dt ′ + R2j (t) . (5)

In these equations, K1 (t) and K2 (t) are the memory kernels for the evolution of the systematic, frictional forces (viscous
drags) acting on the tagged atoms at time t and proportional (but opposite) to the velocities of the tagged atoms at all
previous times in the past. Meanwhile, R1i (t) and R2j (t) are the random forces which: (i) vanish in the mean ⟨R1i (t)⟩ = 0
and

⟨
R2j (t)

⟩
= 0 (⟨· · · ⟩ means the statistical time average at thermal equilibrium), and (ii) are uncorrelated with v1i (0)

and v2j (0), respectively. In particular, the random forces describe the non-linear effects, initial transient processes and the
dependence on the thermal fluctuations in the velocities of the surrounding atoms. Instantaneously, the total and random
forces are the same f1i (0) = R1i (0) and f2j (0) = R2j (0) (see Eqs. (4) and (5)), but the two quantities evolve differently in
time in such away that the following relations ⟨R1i (t) v1i (0)⟩ = 0 and

⟨
R2j (t) v2j (0)

⟩
= 0 are preserved for all times [19–23].
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