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a b s t r a c t

Herein, a study on the hydrodynamic modelling of pontoon bridges is presented, with the Bergsøysund
Bridge as a representative example. The model relies on the finite element method and linearized poten-
tial theory. The primary emphasis is placed on the stochastic response analysis within the framework of
the power spectral density method. The quadratic eigenvalue problem is solved using a state-space rep-
resentation and an iterative algorithm. The contribution of the fluid–structure interaction to the overall
modal damping is investigated. Response effects due to changes in the sea state are studied. A frequency-
independent approximation of the hydrodynamic coefficients is presented and discussed.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Although the history of floating bridges may be traced back as
far as 2000 BC [1], only in recent decades have floating bridges
begun to be developed to a sufficient degree of sophistication such
that they can be applied as critical components of modern
infrastructure. Compared with land-based bridges, including
cable-stayed bridges, only limited information on floating bridges
is currently available, particularly regarding construction records,
environmental conditions, durability, operations and performance.
This is clear from the fact that only approximately twenty long
floating bridges currently exist throughout the world. The major
trends in the development of floating bridges and other very large
floating structures (commonly abbreviated VLFSs) have been
presented by Wang et al. [2] and Wang and Wang [3].

The state-of-the-art design philosophy for floating bridges in
1997 was outlined by Moe [4]. It was remarked that standard
engineering practices were not directly applicable to floating
bridges. A verified design code for floating bridge design would
drastically reduce the effort required during the planning stage
and would thus increase the potential economic advantages of
floating bridges over many alternative bridge concepts. From a
broader perspective, a unifying, efficient, and reliable method for
simulating the behaviour of floating bridges is the primary goal.

The Norwegian Public Roads Administration (NPRA) is currently
investigating possible technological solutions for a ferry-free
Coastal Highway Route E39 along the western coast of Norway.
This route stretches 1100 km between the cities of Kristiansand

and Trondheim and requires multiple crossings of deep and wide
fjords. The ferry-free crossings of these deep fjords represent con-
siderable engineering challenges that are difficult or impossible to
solve using existing bridge technology; pontoon-type floating
bridges have been proposed as feasible options.

Of all existing floating bridges, only a few rely on discretely dis-
tributed pontoons, whereas the remainder are based on continuous
pontoon girders. The majority of these bridges are also provided
with additional stiffness through side-mooring. Only two long-
span end-supported floating bridges exist in the world: the
Bergsøysund Bridge and the Nordhordland Bridge, both relying
on discretely distributed pontoons and both located in Norway.
In connection with the planning of these structures, interest in
the stochastic dynamic behaviour of floating bridges flourished in
certain research communities, who combined the knowledge from
the highly developed Norwegian offshore industry with knowledge
gained during the construction of the floating bridges found in the
State of Washington, USA, and in British Columbia, Canada. Much
of this pioneering work can be credited to the research groups of
Holand and Hartz (see, e.g., [5–11]) and Borgman [12]. The
methodology was further developed, elaborated and exemplified
by Sigbjörnsson [13] and by Langen and Sigbjörnsson [14].

Since the remarkable efforts contributed to the methodology in
the 70s and early 80s, few case studies have been performed on
real floating bridges. The effects of the flexibility of the superstruc-
ture of a pontoon bridge were studied by Kumamoto and
Maruyama [15], who emphasized the relevance of such a study
in regard to the design of the Yumeshima–Maishima (Yumemai)
Bridge in Osaka, Japan, around the year 2000. This unique bridge
is described in [16] and is the successor to the previous massive

http://dx.doi.org/10.1016/j.compstruc.2015.12.009
0045-7949/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.

Computers and Structures 165 (2016) 123–135

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2015.12.009&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2015.12.009
http://dx.doi.org/10.1016/j.compstruc.2015.12.009
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


research project concerning VLFSs in Japan: the Mega-Float. Seif
and Inoue [17] performed a conceptual case study of the
Bergsøysund Bridge, in which the response of the bridge was
simulated in the time domain for various wave directions and
spreading indices for a specified crest length.

Morris et al. [18] performed a frequency-domain analysis of the
planned William R. Bennett Floating Bridge in British Columbia.
Among other relevant contributions of more recent vintage are
[19,20].

Floating bridges play a modest role in modern infrastructure,
partly because of the limited knowledge of the uncertainties that
arise with increased spans. The longest existing floating bridges
are moored to the seabed and rely on continuous pontoon solu-
tions. However, individual pontoons are beneficial in many cases,
and for deep straits such as fjords, it is not practically feasible to
incorporate anchoring. From this kind of design follows a greater
importance of the correlation of the wave action field.

An intermediate study concerning the stochastic modelling of
the dynamic behaviour of the Bergsøysund Bridge was performed
by Kvåle et al. [21]. The cited paper presents a similar study of
the Bergsøysund Bridge; however, the current paper is far more
elaborate and extensive, with respect to both the model and the
interpretation of the analyses. The current paper presents a two-
part combined model of the Bergsøysund Bridge, in which the
fluid–structure interaction is considered using linear potential the-
ory and the superstructure is represented by a finite element (FE)
model consisting of beams and shells. The presented model serves
as a basis for evaluating and discussing the damping contribution
from the fluid–structure interaction. The effects of changes in the
sea state, as represented by the crest length and the significant
wave height, are studied in terms of both the wave excitation
and the global response of the bridge. Because of the discretely dis-
tributed pontoons used in the bridge design, the wave excitation
acts at only a few well-separated points. Thus, the correlation of
the wave action on the bridge is an important issue and a vital
aspect of this paper. With time-domain analyses in mind, the
memory effect in the contribution from the fluid–structure interac-
tion is avoided by applying two different frequency-independent
approximations, and the resulting errors are discussed.

2. Outline of the theoretical model

A floating bridge is a complex structure, requiring theories from
multiple scientific fields for the establishment of a complete
numerical model. This section serves to outline the theoretical
and mathematical framework needed for such a model. The
frequency-domain equations of motion are established in Sec-
tion 2.1. To solve these equations of motion with regard to the
response, the power spectral density method is introduced in Sec-
tion 2.2. The load acting on the structure is established through a
random, Gaussian representation of the sea surface, which is estab-
lished in Section 2.3 in the form of spectral densities. Furthermore,
the load spectral densities are computed based on the sea surface
spectral densities, as discussed in Section 2.4. To obtain a useful
interpretation of the global system, a modal study is beneficial.
Because of the self-exciting nature of a floating bridge, particular
attention must be paid to the eigenvalue solution, as shown in
Section 2.5.

2.1. Equations of motion

Within the framework of a finite element method (FEM) formu-
lation, the equations of motion for a floating structure can be writ-
ten as follows (see, e.g., Naess and Moan [22]):

½Ms�f€uðtÞg þ ½Cs�f _uðtÞg þ ½Ks�fuðtÞg ¼ fphðtÞg ð1Þ

where t is the time; ½Ms�; ½Cs� and ½Ks� are the structural mass,
damping and stiffness matrices, respectively; fuðtÞg is the displace-
ment vector; and fphðtÞg is the total hydrodynamic action, including
both the fluid–structure interaction and the wave action. The float-
ing elements contribute via forces from the interaction between the
water and the structure. The total hydrodynamic action can be for-
mally expressed as follows:

fphðtÞg ¼
Z 1

�1
½mhðt � sÞ�f€uðtÞgdsþ

Z 1

�1
½chðt � sÞ�f _uðtÞgds

þ ½Kh�fuðtÞg þ fpðtÞg ð2Þ

Here, ½mhðtÞ� and ½chðtÞ� are the time-domain representations of the
added hydrodynamic mass and the added hydrodynamic damping,
respectively; and fpðtÞg represents the wave excitation forces. The
first three terms on the right-hand side are models of the fluid–
structure interaction forces. The time-domain representation of
the added mass, ½mhðtÞ�, is related to the frequency-dependent
hydrodynamic mass, ½MhðxÞ�, as follows:

½mhðtÞ� ¼ 1
2p

Z 1

�1
½MhðxÞ�eixtdx ð3Þ

Similarly, for the hydrodynamic damping, the following holds:

½chðtÞ� ¼ 1
2p

Z 1

�1
½ChðxÞ�eixtdx ð4Þ

The restoring forces, however, are assumed to be independent
of frequency. This implies that the frequency-domain and time-
domain representations are identical. Here, the angular frequency
is denoted by x, and i �

ffiffiffiffiffiffiffi
�1

p
.

The wave excitation force, fpðtÞg, is modelled herein as a homo-
geneous, stochastic, Gaussian process. The literature supports the
validity of this assumption for the case of deep water andmoderate
wave heights (see, e.g., [23]). It follows that the response process
inherits the properties of Gaussianity and homogeneity. It is
assumed that the displacement and force processes can be
expressed using generalized harmonic decomposition [24] as
follows:

fuðtÞg ¼
Z 1

�1
eixtfdZuðxÞg ð5Þ

fpðtÞg ¼
Z 1

�1
eixtfdZpðxÞg ð6Þ

where fZuðxÞg and fZpðxÞg are the spectral processes correspond-
ing to the response vector and the wave excitation force vector,
respectively. The equations of motion can now be re-written in
the frequency domain as follows:

�x2½MðxÞ� þ ix½CðxÞ� þ ½K�� �fdZuðxÞg ¼ fdZpðxÞg ð7Þ
The fluid–structure interaction gives rise to inertia, damping

and restoring forces. Hence, the system mass, damping and
restoration (stiffness) are expressed as follows:

½MðxÞ� ¼ ½Ms� þ ½MhðxÞ� ð8Þ
½CðxÞ� ¼ ½Cs� þ ½ChðxÞ� ð9Þ
½KðxÞ� ¼ ½Ks� þ ½Kh� ð10Þ

By applying linearized potential theory, numerical values can be
established for the wave excitation process, the hydrodynamic
restoration matrix, the frequency-dependent added damping
matrix and the frequency-dependent added mass matrix. This will
be further discussed in Section 2.4. For further details regarding the
establishment of the equations of motion, the reader is referred to
[22].
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