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a b s t r a c t

This paper presents a hierarchical topology optimization method to simultaneously achieve the optimum
structures and multiphase material cells for minimum system thermal compliance. Macro design
variables and micro phase design variables are introduced independently, and coupled through elemental
phase relative density. Based on uniform interpolation scheme with multiple materials, the sensitivities
of thermal compliance with respect to the design variables on the two scales are derived.
Correspondingly, the hierarchical optimization model of structures and multiphase material cells is built
under prescribed volume fraction and mass constraints. The proposed method and computational model
are validated by several 2D numerical examples. The superiority of multiphase materials in hierarchical
optimization is presented through the comparison of single phase materials. The optimized results of
periodic structure, hierarchical structure and traditional continuous structure are compared and
analyzed. At last, the effects of volume fraction and mass constraints are discussed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Structural optimization is drawing more attention than ever
before with the shortage of global resources and higher levels of
world-wide competition in industries. Comparing shape optimiza-
tion and size optimization, topology optimization is considered
more efficient in decreasing weight at the conceptual design stage.
Currently, topology optimization technology has been widely
applied in various fields since it was proposed by Bendsoe and
Kikuchi [1] in 1988. Periodic porous material like cellular materials
and truss-like materials are always of high interest in automobile,
aerospace and other industrial applications for exhibiting proper-
ties such as a high ratio of stiffness to weight, excellent energy
absorption and thermal isolation characteristics. In recent years,
the topology optimization method has been a powerful tool to
design the multifunctional material microstructures [2–7] since
inverse homogenization method was proposed by Sigmund [8].
In the past, the topology optimization method was mainly used
to solve single scale optimization problems either for the optimal
design of macrostructures to improve structural performance or
for the material design to develop new microstructures with
prescribed or extreme properties. However, the material
microstructures with certain equivalent properties are not always
guaranteed to be efficient when constructing structures, since both

structural shapes and boundary conditions always vary in practical
use. That is, we need a kind of system-level optimization technol-
ogy which can embody the structural performance and material
properties together. Although macro structural optimization and
material microstructure design are at two different scales, they
have a common feature, which is that they both focus on material
distribution. The common feature supplies a possibility to inte-
grate macrostructure and material microstructure into one system,
which can offer its own set of strengths. To some extent, the
integrated optimization can be understood as a material
microstructure design method which can satisfy macro structure
performance. Rodrigues et al. [9] proposed a hierarchical optimiza-
tion method of structure and porous material, and Coelho et al.
[10] extended this hierarchical approach in 3D elastic structures.
However, this work strongly aims to achieve optimal material
microstructures and allows variation from point to point in
macro-scale, which leads to low computational efficiency and
some difficulties in manufacture. A universal approach for concur-
rent design at two scales was proposed by Liu et al. [11]. Material is
assumed to be uniformly distributed on the macro level. Penaliza-
tion approaches are adopted at two scales to achieve clear
topologies, i.e. porous anisotropic material penalization at the
macro-scale, and conventional SIMP at the micro-scale.
Optimizations at two scales are integrated into one system through
homogenization theory. This method is recommended for easier
manufacturing, although optimal design may not be achieved.
Similar optimization models were applied by Yan et al. [12] and
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Niu et al. [13] to account for thermo-mechanical loads and
frequency optimization. Recently, Huang et al. [14] developed the
BESO to the concurrent design of macrostructures and material
microstructures, which demonstrated certain advantages over the
continuum density-based method [15–18]. Zhang and Sun [19]
and Yan et al. [20] investigated the size-effects of material
microstructure on the concurrent optimization based on superele-
ment technique and extended multiscale finite element method,
respectively. Through numerical examples, Liu et al. [21] pointed
out that structure design is oriented to structure efficiency,material
design is oriented to multifunctional properties and hierarchical
design is oriented to both structure efficiency and multifunctional
properties. Deng et al. [22] and Yan et al. [23] indicated that, some-
times the two-scale optimization of structure and porous material
is more advantageous than the sole macro structural optimization
in terms of improving multi-objective performances.

Multiphase materials have been researched widely because of
their advantages in complicated external conditions. A literature
study points out that structural topology optimization with
multiphase materials stemmed from Thomsen [24]. Sigmund and
his co-worker [3,25] expanded the SIMP to interpolate material
properties of two solid material phases and void. Up to now, mul-
tiphase materials have been studied by various methods [26–28].
In particular, Gao and Zhang [29] testified that the mass constraint
is more effective than the volume constraint in the topology
optimization of structures consisting of multiphase materials.
Similar to Jacobi and Gauss–Seidel iteration processes, Tavakoli
and Mohseni [30] split multiphase material problems into a series
of binary material iterative problems. Derived from multiphase
material topology optimization, a method labeled as Discrete
Material Optimization (DMO) was proposed by Stegmann and
Lund [31] to treat the laminate design of composite materials.

Different with literature [15,18], the proposed hierarchical
optimization approach is to find optimum thermal conductive
configurations for structures and porous multiphase material cells
under prescribed volume fraction and mass constraints. There is
only one finite element model. Structure and material cell are
coupled through elemental phase relative density instead of
homogenization theory. A uniform interpolation scheme is used
to deal with multiple material problems. The layout of the paper
is as follows. A hierarchical optimization model for thermal con-
duction is established and described in Section 2. The two-scale
sensitivity analysis based on finite element method is presented
in Section 3. In Section 4, the numerical treatments are given.
In Section 5, several 2D numerical examples are presented to
demonstrate the effectiveness of the proposed optimization
algorithm. In Section 6, a summary and all drawn conclusions
are provided.

2. Hierarchical topology optimization model with multiphase
materials

In this research, it is assumed that structure is assembled by
uniform multiphase material cells. The optimization at two scales
is integrated into one system and resolved simultaneously. As
shown in Fig. 1, the 2D designable domain is divided into M � N
finite elements, where M stands for the total number of unit cells
and N stands for the total number of finite elements within each
cell. To ensure the structural periodicity, all unit cells should be
meshed consistently. Two classes of design variables are indepen-
dently defined, i.e. macro design variable Pi (i = 1, 2, . . . ,M) in

structural design domain and micro phase design variable rðqÞj

(j = 1, 2, . . . , N, q = 1, 2, . . . , S, where S stands for the varieties of
solid materials) in a unit cell, both ranging from 0 to 1. Pi ¼ 1 if unit
cell i is occupied by multiphase material cell. Pi ¼ 0 if no multi-

phase material cell exists in unit cell i. rðqÞj ¼ 1 if element j is full

of phase material q. rðqÞj ¼ 0 if phase material q doesn’t exist in
element j within the material cell.

In every finite element, micro phase design variables should
satisfy

XS
q¼1

rðqÞj ¼ 1 ð1Þ

Eq. (1) reflects the mutex relationship between rðqÞj ðq ¼ 1;2; . . . ; SÞ,
i.e. if rðqÞj ¼ 1, rðnÞj ¼ 0 (n– q). Eq. (1) cannot be used directly in the
optimization process because huge combinatorial problem is
involved. Here a uniform interpolation model is used to solve the
problem of multiphase materials which will be introduced in
Section 3.

For a discretized structure, each element is assigned S relative
densities and can be expressed as the combination of two-scale
design variables [21]

xðqÞij ¼ Pir
ðqÞ
j ð2Þ

In Eq. (2), i and j indicate the unit cell number and the elemental
number within the unit cell, respectively. Elemental phase relative

density xðqÞij imposes the design variables Pi and rðqÞj associated with
each element in designable domain. From Eq. (2) we know that the
status of any element is identical to its corresponding ones in other
existent unit cells, which guarantees the uniformity of porous
material cell at a macro-scale.

To seek the minimum thermal compliance for structure and
porous cell with multiphase materials, the hierarchical topology
optimization can be formulated as

Fig. 1. Schematic figure of hierarchical optimization with multiphase materials: (a) design domain; (b) unit cell.
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