
Physica A 486 (2017) 434–445

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Law of large numbers for the SIR model with random vertex
weights on Erdős–Rényi graph
Xiaofeng Xue
School of Science, Beijing Jiaotong University, Beijing 100044, China

h i g h l i g h t s

• We study the SIR model with random vertex weights on Erdös–Rényi graph.
• We give the law of large numbers of the model.
• Our result extends classic theory of SIR on the complete graph.
• Our result is consistent with the intuitive mean-field idea.
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a b s t r a c t

In this paper we are concerned with the SIR model with random vertex weights on Erdős–
Rényi graph G(n, p). The Erdős–Rényi graph G(n, p) is generated from the complete graph
Cn with n vertices through independently deleting each edge with probability (1 − p). We
assign i. i. d. copies of a positive r. v. ρ on each vertex as the vertex weights. For the SIR
model, each vertex is in one of the three states ‘susceptible’, ‘infective’ and ‘removed’. An
infective vertex infects a given susceptible neighbor at rate proportional to the production
of the weights of these two vertices. An infective vertex becomes removed at a constant
rate. A removed vertex will never be infected again. We assume that at t = 0 there is
no removed vertex and the number of infective vertices follows a Bernoulli distribution
B(n, θ ). Our main result is a law of large numbers of the model. We give two deterministic
functions HS (ψt ),HV (ψt ) for t ≥ 0 and show that for any t ≥ 0, HS (ψt ) is the limit
proportion of susceptible vertices and HV (ψt ) is the limit of the mean capability of an
infective vertex to infect a given susceptible neighbor at moment t as n grows to infinity.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we are concerned with the SIR (Susceptible–Infective–Removed) model with random vertex weights
on Erdős–Rényi graph G(n, p). First we introduce some notations. For each integer n ≥ 1, we denote by An the set
{0, 1, 2, . . . , n − 1}. We consider the n elements in An as n vertices and assume that any two vertices are connected by
an edge. As a result, we obtain a complete graph with n vertices, which we denote as Cn. Let p ∈ (0, 1), then we can obtain a
randomgraphGn through the procedure that each edge on Cn is independently deletedwith probability 1−p, in otherwords,
remainedwith probability p. The graphGn with vertices set An and edgeswhich are remained is called the Erdős–Rényi graph
with parameter G(n, p) (see Chapter 4 of [1]). For any 0 ≤ i < j ≤ n − 1, we denote by i ∼ jwhen the edge connecting i and
j on Cn is remained during the procedure to generate Gn. That is to say, i ∼ j when and only when i is a neighbor of j on the
graph Gn.
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Let ρ be a positive random variable such that P(ρ > 0) > 0 and P(0 ≤ ρ ≤ M1) = 1 for some M1 < +∞ while
{ρ(i)}0≤i<+∞ are i.i.d. copies of ρ which are independent of {Gn}n≥1, then the SIR model {Xt}t≥0 on Gn with vertex weights
{ρ(i)}0≤i≤n−1 is a continuous-time Markov process with state space {0, 1,−1}An . That is to say, at each moment t ≥ 0, there
is a spin on each vertex on Gn with value taking from {0, 1,−1}. For each i ∈ An and t ≥ 0, we denote by Xt (i) the value of
the spin on i at moment t , then {Xt}t≥0 evolves according to the following rules. If Xt (i) = −1, then i is frozen in state −1
after the moment t . That is to say, Xs(i) = −1 for any s ≥ t . If Xt (i) = 0, then

P
(
Xt+1t (i) = 1

⏐⏐Xs, s ≤ t
)

=

(λ
n

n−1∑
j=0

ρ(i)ρ(j)1{j∼i,Xt (j)=1}

)
1t + o(1t)

and

P
(
Xt+1t (i) = 0

⏐⏐Xs, s ≤ t
)

= 1 − P
(
Xt+1t (i) = 1

⏐⏐Xs, s ≤ t
)
+ o(1t)

where λ > 0 is a positive parameter called the infection rate and 1A is the indicator function of the random event A. If
Xt (i) = 1, then

P
(
Xt+1t (i) = −1

⏐⏐Xs, s ≤ t
)

= 1t + o(1t) = 1 − P
(
Xt+1t (i) = 1

⏐⏐Xs, s ≤ t
)
+ o(1t ).

Note that there exists an unique continuous-time Markov process satisfying the above transition rates functions according
to classic probability theory (see Section one of [2]).

Intuitively, {Xt}t≥0 describes the spread of an epidemic on Gn. Vertices in state 0 are susceptible which are healthy and
may be infected by the epidemic. Vertices in state 1 are infective that can infect susceptible neighbors. Vertices in state −1
are removed which will never be infected again. An infective vertex waits for an exponential time with rate one to become
removed while a susceptible vertex is infected by an infective neighbor at rate proportional to the production of the vertex
weights on these two vertices. Note that herewe say two vertices are neighbors when the edge connecting them is remained
during the procedure to generate Gn.

For any t ≥ 0, we define

St =

n−1∑
j=0

1{Xt (j)=0} (1.1)

as the number of susceptible vertices at moment t and

Vt =

n−1∑
j=0

ρ(j)1{Xt (j)=1} (1.2)

as the total capability of the infective vertices to infect neighbors at moment t . We write Xt , St and Vt as X
(n)
t , S(n)t and V (n)

t
when we need to point out that process is on Gn. For the moment t = 0, we assume that {X (n)

0 (i)}n−1
i=0 are i.i.d. such that

P(X (n)
0 (0) = 1) = θ = 1 − P(X (n)

0 (0) = 0) (1.3)

for some θ ∈ [0, 1]. Under this assumption, we obtain the law of large numbers for
( S(n)t

n ,
V (n)
t
n

)
as n grows to infinity at any

moment t . For mathematical details, see the next section.
Readersmaywonderwhat will occur when at t = 0 there is only one infective vertex.We study a similar epidemicmodel

under this assumption in [3]. According to a similar analysis with that in [3], it can be shown that if there is only one infective
vertex at t = 0, then the epidemic ‘outbreaks’ when and only when λ > λc =

1
pEρ2

(see the main theorem of [3] for the
accurate meaning of ‘outbreak’). Actually we think this is an important result but we do not want to repeat in this paper lot
of similar calculation with that in [3], so we only give a simple comment here. Readers interested with mathematical details
can see [3].

When ρ = p = 1, then our model reduces to the classical SIR model on complete graphs. According to the theory
of density dependent population model introduced in Section 11 of [4], under assumption (1.3), ( S

(n)
t
n ,

V (n)
t
n ) converges in

probability to the solution (st , vt ) of the following ODE as n → +∞.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
dt

st = −λstvt ,

d
dt
vt = λstvt − vt ,

s0 = 1 − θ,

v0 = θ.

(1.4)

Our main result given in the next section can be seen as an extension of the above conclusion. Phase transition occurs for
ODE (1.4). Conditioned on v0 is very small, vt decreases to 0 exponentially when λ < 1 while increases exponentially at first
when λ > 1. Figs. 1–4 in the Appendix give simulation results for vt , where t ∈ [0, 10], v0 = 0.001 and λ = 0.5, 0.99, 1.01, 2
respectively.
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