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h i g h l i g h t s

• Many-body system with S-dependent Lagrangian inevitably develops a hierarchical structure.
• Lagrangian and energy of these systems are vector functions, while conjugated momenta are second-order tensors.
• Dominance hierarchies are determined by differences between individuals in coping with stress an individual with fastest coping with

stress becomes the dominant.
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a b s t r a c t

In this paper, we extend our generalized Lagrangian dynamics (i.e., S-Lagrangian dynamics,
which can be applied equally to physical and non-physical systems as per Sandler (2014))
to many-body systems. Unlike common Lagrangian dynamics, this is not a trivial task. For
many-body systems with S-dependent Lagrangians, the Lagrangian and the corresponding
Hamiltonian or energy become vector functions, conjugated momenta become second-
order tensors, and the system inevitably develops a hierarchical structure, even if all
bodies initially have similar status and Lagrangians. As an application of our theory, we
consider dominance and hierarchy formation, which is present in almost all communities
of living species. As a biological basis for this application, we assume that the primary
motivation of a groups activity is to attempt to cope with stress arising as pressure from
the environment and from intrinsic unmet needs of individuals. It has been shown that
the S-Lagrangian approach to a group’s evolution naturally leads to formation of linear or
despotic dominance hierarchies, depending on differences between individuals in coping
with stress. That is, individuals that cope more readily with stress take leadership roles
during the evolution. Experimental results in animal groupswhich support our assumption
and findings are considered.
© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

0. Introduction

In the study of real complex systems (for example, living organisms) most system parameters remain hidden or out
of control. This leads to large deviations in experimental results. Consequently, small differences in the numerical values
of experimental data lose their significance. Indeed, the state of such a system is better described by a domain of points
rather than a single point in the state space of the system. This kind of uncertainty does not have a stochastic nature, and
following the idea proposed by Zadeh [1–3], we could describe the possibility of a given state of a system by some function
0 ≤ µ(r1...rN ; t) ≤ 1 of the systems parameters {r1...rN} and time t and the possibility of a system’s ‘‘moving’’ by some
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function of the rates of change of the system’s parameters, 0 ≤ P
(
ṙ1...ṙN ; r1...rN

)
≤ 1 (later we will call ṙk ‘‘velocities for

brevity).
It has been shown in [4,5] that, if a system’s evolution satisfies the causality principle, if the system’s state space has

a trivial local topology, and if the system’s state can be described by a compact fuzzy set,1 then the function µ(r1...rN ; t)
satisfies the equation2

∂µ

∂t
+

(
ṙk ·

∂µ

∂rk

)
= 0, (1)

where ṙk should be found from:

λ
∂P
∂ ṙk

=
∂µ

∂rk
, (2)

P
(
ṙ1...ṙN ; r1...rN

)
= χ (µ), (3)

where χ (µ) is amonotonic functionwith χ (1) = 1 and χ (0) = 0, and λ > 0 is a Lagrangemultiplier. It should be emphasized
that the derivation of Eqs. (1)–(3) does not depend on any specific properties of a system (see [4,5] for details).

In [4], single-body systems were considered, and it has been shown that the most possible system trajectories3 satisfy
the generalized Lagrangian-like equations

d
dt

∂L
∂ q̇i

−
∂L
∂qi

=
∂L
∂S

∂L
∂ q̇i

, (4a)

dS
dt

= L(q̇, q, S, t), (4b)

where L(q̇, q, S, t) is a solution of (3) with respect to the velocity Ṡ of some parameter S, while {q, q̇} are the remaining
parameters and their velocities. The Lagrangian L(q̇, q, S, t) was called the ‘‘most possible S-Lagrangian (or the S-Lagrangian,
for brevity).

In Section 1 we generalize this approach to many-body systems. Unlike in the common classical mechanics, this is
not a trivial task. For many-body systems with an S-dependent Lagrangian, the Lagrangian (along with the corresponding
Hamiltonian or energy) becomes a vector function, conjugated momenta become second-order tensors, and the system
inevitably develops a hierarchical structure, even if all bodies initially have similar status and Lagrangians.

In Section 2, we apply the dynamics of many-body systems with S-dependent Lagrangians to explain dominance
hierarchies in social groups. This phenomenon is present in almost all communities of living species, from populations of
cancer cells [6] and neurons in the brain (Ukhtomsky dominanta [7]) to high levels of human societies [8,9].

There are several forms of dominance hierarchies, but the most common are linear dominance and despotic dominance.
In a linear hierarchy, each individual dominates the individuals who are below him and not those above him. In a despotic
hierarchy, one individual is dominant in the group and all the othermembers are that individuals submissive servants, while
‘‘lateral’’ interactions betweenmembers are irrelevant. There is sea of literature related to dominance hierarchies (see [9] and
references therein). Inmostmodels, the origin of hierarchical structures is explained by competition for better resources and
breeding,which leads to aggressive interactions between agents in the society. Agents thatwinmost of their fights rise higher
within the hierarchy, while those that lose most fights occupy the lowest positions (see, for example, [10] and references
therein). Mathematical models of dominance hierarchies describe ‘‘winner–loser’’ strategy by using stochastic mechanisms
and analyze this behavior numerically or, sometimes, analytically [11,12]. It should be noted, however, that in situations
with an abundance resources and spare breeding ability,4 there are still dominance hierarchies, so other mechanisms for
hierarchical structure formation are required.

Behavior of groups with non-fighting hierarchies has been also considered. The most popular example is the Cucker–
Smale model of flocking with hierarchical leadership (see for example, [13,14]). In these studies, however, the hierarchy
structure was static and was primordially introduced.

In spite of the differences between living spices and thew differences in their behavior, dominance hierarchies are
strikingly similar in almost all communities. Such tremendous diversity of system features accompanied with similar
properties of dominance hierarchies leads us to think that dominance hierarchies result as very general features of living
beings. Hierarchy formation is based on the notion of ‘‘adaptation energy’’, which was introduced by Selye [15], was
considered in [16,17]. These works are conceptually close to ours, but use another mathematical and biological approaches.

A primary difference between living creatures and non-living things is the capacity for reproduction. However, if
one considers only individual life rather than the existence of species, a major paradox is that living things actively
counteract degradation or injury in a continuously changing environment through homeostatic protection. The discoverer of
homeostasis, Cannon [18], assumed that homeostasis results from a tendency of organisms to decrease their level of stress,

1 That is valid for almost all real systems.
2 Summation with respect to the same ascending and descending indices is assumed unless an opposite one is explicitly written.
3 These correspond to the case µ(r1...rN ; t) = 1, P

(
ṙ1...ṙN ; r1...rN

)
= 1.

4 An example could be a case in which there is a small number of males and a large number of females in a friendly environment.
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