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a b s t r a c t

Elastoplastic analysis of structures with mathematical programming methods aims at finding the load
factor of a given load pattern subject to equilibrium and compatibility requirements, satisfying yield
and complementarity constraints. A new approach is introduced that identifies the specific yield hyper-
planes associated with all critical sections avoiding all irrelevant alternatives. This results into substantial
reduction of the size of the yield and complementarity conditions. In addition, it has a beneficial effect in
addressing multi-linear hardening and/or softening holonomic behavior by controlling the size of the
problem. Numerical examples are presented that verify the efficiency of the proposed approach.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Limit analysis of structures based on rigid-perfectly plastic con-
stitutive behavior has offered the means to assess the ultimate
capacity of frame, plate and other structures. Static-safe and kine-
matic theorems proved very efficient not only in calculating the
ultimate state, but also in changing the mentality in the conceptual
design of structures as well as structural components and
connections.

The books of Massonet and Save [1], Neal [2] and others laid a
solid base for this development. The mathematical formulation of
limit analysis within the realm of linear programming secured fur-
ther the establishment of this methodology. A decisive step for-
ward was made by Maier and his coworkers [3–7] that extended
the formulation to account for isotropic and kinematic harden-
ing/softening behavior addressing both holonomic and non-holo-
nomic problems. The ultimate load-carrying capacity of the
structure is determined by solving an optimization problem with
equilibrium, compatibility, yield and complementarity constraints.
The whole formulation is based on multi-linear constitutive rela-
tions following plastic deformation theories [8].

This enhancement was driven and supported from the develop-
ments in mathematical programming that treated properly com-
plementarity problems. More specifically, the exploration of the
complementarity problem by Cottle [9] has directed the formula-
tion of elastoplastic analysis in the form of a Parametric Linear

Complementarity Problem [6], while Kaneko later proposed a
reformulation of this problem [10]. Moreover, a variety of alterna-
tive mathematical programming procedures have been applied for
elastoplastic analysis of structures such as Iterative Linear Pro-
gramming, Quadratic Programming, Restricted Basis Linear Pro-
gramming, Parametric Linear Complementarity and Parametric
Quadratic Programming [3,5,6,11,12].

The recent development of algorithms appropriate for Mathe-
matical Programming with Equilibrium Constraints (MPEC) prob-
lems [13–15] has extended the potential of the proposed
methods for structural analysis for both holonomic and nonholo-
nomic assumptions. Extensive work in this direction was con-
ducted by Tin-Loi and coworkers [16–21]. More recently, in this
context, softening structural behavior was also examined under
the effect of interaction (axial force-bending moment) by Cocchetti
and Maier [22], Ardito et al. [23] and Tangaramvong and Tin-Loi
[24,25].

The standard formulation of elastoplastic analysis with mathe-
matical programming is based on the notion of calculating the
strength reserves for every critical section and for all possible seg-
ments of the piecewise linear (PWL) yield surface. This defines a
vector of reserves for every critical section with multiplicity equal
to the number of segments of the yield surface. For a more general
interaction, this evaluation is extended to every hyperplane
increasing the dimension of the vector of strength reserves accord-
ingly. The same number of plastic multipliers is engaged also for all
possible plastic deformations, which together with the correspond-
ing strength reserves compete within the discrete in nature com-
plementarity condition. This perplexing procedure generates
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unnecessary information that increases prohibitively the size of
the problem especially for a finer piecewise linear discretization
of the yield surface.

This work aims at reducing the size and complexity of the cur-
rent formulation addressing the elastoplastic problem within the
framework of mathematical programming. More specifically, the
proposed simplification is threefold and concerns the evaluation
of strength reserves, the direct evaluation of the hardening/soften-
ing response at every critical section and the reduced formulation
of the complementarity condition. The main step towards these
goals is the identification of the particular cone in which every
stress vector resides for all critical sections at every loading stage
of the optimization process. Based on this information, both the re-
serves and the complementarity condition of all critical sections
are solely formulated for one particular cone per critical section
and optimization step. Moreover, detection of the unique harden-
ing/softening branch at which a critical cross-section is stressed,
significantly simplifies the incorporation of multi-linear hardening
law into the formulation of the problem. This avoids generation of
all possible relations in every direction around the yield surface for
all different hardening/softening branches in the constitutive
relation.

The remaining sections are organized as follows. First, the gov-
erning relations that describe the holonomic elastoplastic problem
are presented. Equilibrium, kinematic and constitutive relations
together with yield and complementarity conditions that incorpo-
rate the concept of cone and hardening/softening branch identifi-
cation are discussed. Then, the formulation of elastoplastic
analysis as a MPEC problem incorporating the above concepts is
presented. Subsequently, numerical results of plane steel frames
are presented that illustrate the applicability and the efficiency
of the proposed scheme.

2. Problem formulation

The elastoplastic analysis problem is defined on the basis of
equilibrium, constitutive and kinematic equations, together with
yield and complementarity conditions.

Plane frames are considered herein consisting of prismatic ele-
ments subjected only to nodal loading for simplicity reasons.
Moreover, small displacements are assumed to establish equilib-
rium equations at the initial undeformed configuration. In addi-
tion, plastic behavior, if present, is considered only at preselected
critical sections, i.e. the end sections of the elements, whereas
the remaining parts behave elastically. The nonlinear inelastic
behavior at critical sections is described by a multi-linear model
and yield conditions are appropriately linearized. Furthermore, un-
der the external loading, if local unloading occurs, is assumed hap-
pening along the load displacement path and not as elastic
unloading, adopting a holonomic, i.e. path-independent structural
behavior. Although this is a simplified assumption, especially for
the case of softening behavior, it can be considered reasonable
for monotonically increasing external actions [6,22,24]. Moreover,
isotropic hardening is adopted, which under holonomic assump-
tion and monotonic loading yields satisfactory results. For cyclic
loading though, kinematic hardening is more appropriate and
definitively closer to real behavior of steel structures.

The formulation of the problem requires treatment at three dif-
ferent levels, i.e. the level of critical cross sections, the element le-
vel and the structural level. All final equations are expressed in
dimensional form at the structural level. The yield conditions,
though, are first introduced in nondimensional form. Moreover,
the method follows the sign convention of matrix structural anal-
ysis, whereas final results are presented on the basis of engineering
sign convention.

2.1. Equilibrium

Each plane beam element develops six stress resultants at its
ends, as shown in Fig. 1. Herein, the axial force (si

1), bending mo-
ment at the start node j (si

2) and bending moment at the end node
k (si

3), are considered as independent primary actions for member i
[25]. Thus the six end actions of the element can be expressed at
the global axes system in terms of the local basic actions by using
the corresponding equilibrium matrix as follows:
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where Fj
x; Fj

y; Mj are the global X and global Y forces and bending
moment at the start node and Fk

x; Fk
y; Mk are the actions at the

end node of the element i at the global system, xi is the angle
formed rotating the global X-axis counterclockwise to meet the lo-
cal x-axis and Li is the element length, [Bi] is the (6 � 3) equilibrium
matrix of the element and {si} is the (3 � 1) stress vector of the
element.

The equilibrium for the whole structure is then established in
terms of the unknown vector of primary actions of all members as:

½B� � fsg ¼ a � ffg ð2Þ

where [B] is the (nf � 3n) structural equilibrium matrix, assembled
by the corresponding element equilibrium matrices arranged diag-
onally, {s} is a (3n � 1) vector of all primary actions in local systems,
a is a scalar load factor, {f} the (nf � 1) vector of nodal loading in the
global system, n denotes the number of elements and nf the number
of degrees of freedom.

2.2. Compatibility

In Fig. 2 the initial-undeformed and the final-deformed config-
uration of a beam element with the corresponding nodal displace-
ments and deformations are presented. For small displacements
considered in this work, the relation between the member defor-
mation {qi} in the local system and the nodal displacements {ui}
at global axes system is given as:

fqig ¼ ½Bi�
T
� fuig ð3Þ

where fqig ¼ fqi
1 qi

2 qi
3g

T
; qi

1 and qi
2 are the axial deformation

and the rotation of the chord at the start node j and qi
3 is the rota-

tion of the chord at the end node k of the member,
fuig ¼ fuj vj hj uk vk hkgT

is the vector of nodal displace-
ments expressed at the global coordinate system containing the
global X and global Y displacements and rotations of start node j
and end node k respectively, while in Fig. 2 the corresponding hat
quantities refer to local axes system. The (3 � 1) vector {qi} deter-
mines directly the deformation state of the element and dictates
the selection of the primary end actions in the equilibrium relation
(2).

The compatibility condition for the whole structure is then gi-
ven by the following linear compatibility relation:

fqg ¼ ½B�T � fug ð4Þ

where {q} is the (3n � 1) deformation vector of the structure and {u}
is the (nf � 1) nodal displacement vector.
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