Accepted Manuscript

Scaling characteristics of mountainous river flow fluctuations determined using a shallow-water acoustic tomography system

Mohamad Basel Al Sawaf, Kiyosi Kawanisi, Junya Kagami, Masoud Bahreinimotlagh, Mochammad Meddy Danial

PII:	\$0378-4371(17)30478-8
DOI:	http://dx.doi.org/10.1016/j.physa.2017.04.168
Reference:	PHYSA 18270
To appear in:	Physica A
Received date:	7 November 2016
Revised date:	27 March 2017

Please cite this article as: M.B. Al Sawaf, K. Kawanisi, J. Kagami, M. Bahreinimotlagh, M.M. Danial, Scaling characteristics of mountainous river flow fluctuations determined using a shallow-water acoustic tomography system, *Physica A* (2017), http://dx.doi.org/10.1016/j.physa.2017.04.168

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1

1	Scaling characteristics of mountainous river flow fluctuations
2	determined using a shallow-water acoustic tomography system
3	Mohamad Basel Al Sawaf ^a , Kiyosi Kawanisi ^{b,*} , Junya Kagami ^a , Masoud Bahreinimotlagh ^a ,
4	and Mochammad Meddy Danial ^a
5	^a Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-
6	1 Kagamiyama, Higashi, Hiroshima, 739-8527, Japan.
7	^b Department of Civil and Environmental Engineering, Institute of Engineering, Hiroshima University, 1-4-1
8	Kagamiyama, Higashi, Hiroshima, 739-8527, Japan.
9	
10	Abstract
11	The aim of this study is to investigate the scaling exponent properties of mountainous river flow fluctuations by
12	detrended fluctuation analysis (DFA). Streamflow data were collected continuously using Fluvial Acoustic
13	Tomography System (FATS), which is a novel system for measuring continuous streamflow at high-frequency
14	scales. The results revealed that river discharge fluctuations have two scaling regimes and scaling break. In contrast
15	to the Ranting Curve method (RC), the small-scale exponent detected by the FATS is estimated to be 1.02±0.42%
16	less than that estimated by RC. More importantly, the crossover times evaluated from the FATS delayed
17	approximately by 42±21 hr ≈2-3 days than their counterparts estimated by RC. The power spectral density analysis
18	assists our findings. We found that scaling characteristics information evaluated for a river using flux data obtained
19	by RC approach might not be accurately detected, because this classical method assumes that flow in river is steady
20	and depends on constructing a relationship between discharge and water level, while the discharge obtained by the
21	FATS decomposes velocity and depth into two ratings according to the continuity equation. Generally, this work
22	highlights the performance of FATS as a powerful and effective approach for continuous streamflow measurements
23	at high-frequency levels.
24	Keywords: Detrended fluctuation analysis, Streamflow, FATS, Rating curves, River flow fluctuations, Scaling
25	characteristics, crossover time.

26 * Corresponding author. E-mail address: kiyosi@hiroshima-u.ac.jp (K. Kawanisi).

Download English Version:

https://daneshyari.com/en/article/5102671

Download Persian Version:

https://daneshyari.com/article/5102671

Daneshyari.com