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a b s t r a c t

Polarity formation in a three-dimensional array of molecules is described as a symmetry
breaking effect of a generalized Ising Hamiltonian. Geometrical constraints in conjunction
with asymmetricmultipole interactions are able to break the spin flip symmetry generating
a non-vanishing average local polarization.
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1. Introduction

In the attempt to describe ferromagnetism W. Lenz in 1920 argued: ‘‘atoms are dipoles which flip between two
positions’’ [1]. Based on this intuition he introduced the following model, known as the Ising model. At each site i of a
lattice a variable Si which can only assume value 1 or −1 is defined. The interactions between the {Si} are restricted to the
nearest neighboring sites only, with a coupling term J , yielding the legendary formula for the internal energy of the system

H = −J

⟨i,j⟩

SiSj. (1)

Even if the early Lenz’s dipole assumption is incorrect it caught the core ingredients for a theoretical approach to
ferromagnetism. A few years later, with the discovery of the spin, the Ising model gained full consistency, its power was
proved beyond the very ferromagnetismbecoming a fundamentalmodel in statisticalmechanics [2]. Its strength is definitely
in its simplicity, for instance in its ability to describe the building up of long range correlations, typical of the phase transition,
by only including short range interactions. Yet, inmany respects the simplicity of the Isingmodel is only apparent and a high
degree of complexity arises from the presence of the 2N withN ∼ 1024 possible states. In fact, it is only in the thermodynamic
limit that a phase transition can be recovered as the result of the spin flip symmetry breaking in the Hamiltonian Eq. (1)
which would otherwise cause a zero ensemble average of the order parameter, i.e. zero spontaneous magnetization [3].
Analogously, it is only in the thermodynamic limit that the analiticy of the free energy is broken at the critical point of the
ferromagnetic transition.

The present work is a generalization to three dimensions of our previous work [4], where we have shown that
spontaneous polar ordering, experimentally observed in molecular crystals [5–8], can be described by an Ising model in
which a symmetry breaking effect occurs due to the simultaneous presence of asymmetrical electrostatic interactions and
the breaking of the translational invariance. The former enter the model in a very natural way once we express the coupling
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in a multipole expansion. The latter is of a pure geometric nature and is caused by the boundary conditions. The model is in
fact used in a different context from phase transitions, but the ‘‘two states’’ Lenz’s inspiring idea is still present, being now
defined by the parity operator (see next section). Notice that now the symmetry breaking, which ensures a non-vanishing
polarization, has a significantly different fundamental origin.

2. Ising Hamiltonian in multipole expansion

Let us denote by C the set of identical molecules constituting our system. The parity operator Π defines a unitary
transformation on C. With a slight abuse of notation we will write Π(M), and Π2(M) = M , meaning that the operator
acts on the coordinate of all the atoms ofM , and will refer to Π(M) and Π2(M) as the state of the moleculeM∀M ∈ C.

In spherical coordinates the parity operator can be represented as

Π :

r
θ
φ


→

 r
π − θ
φ + π


.

Let us consider a distribution of N point-like charges qi at positions ri, i = {1, . . . ,N}. The l-order multipole moment in
spherical coordinates is given by

Qm
l =

N
i

qiRm
l (ri), (2)

where Rm
l (ri) are the regular solid harmonics given by

Rm
l (r, θ, φ) =


4π

2l + 1
r l Ym

l (θ, φ), (3)

whereYm
l are the spherical harmonics. Since r is invariant byparity theRm

l and consequently the general quadrupolemoment
Qm
l has the same parity as the Ym

l , i.e. (−1)l

ΠQm
l = (−1)lQm

l .

Consider two non-overlapping charge distributions centered around RA and RB. The electrostatic energy in multipole
expansion can be written as [9,4]:

V (RAB) = kC
∞

lA=0

∞
lB=0

(−1)lB(QA)lABlA,lB(QB)lB , (4)

where RAB = RB − RA, kC is the Coulomb constant whose value depends on the units, and where for each lA, lB ∈ [0, ∞)
the (2lA + 1) × (2lB + 1) matrix BlA,lB is defined by

BmA,mB
lA,lB

(RAB) =


2(lA + lB)

2lA

1/2

(−1)mA+mB I−(mA+mB)
lA+lB

(RAB) C
lA+lB
lAmA,lBmB

|mA| ≤ lA, |mB| ≤ lB, (5)

where Iml (r) are the irregular solid harmonics given by

Iml (r, θ, φ) =


4π

2l + 1
Ym
l (θ, φ)

r (l+1)
, (6)

C lA+lB
lAmA,lBmB

are the Clebsch–Gordan coefficients, and (QA)
m
l (resp. (QB)

m
l ) are the multipole moments of distribution A (resp.

B). It is easily seen from the symmetry of the Clebsch–Gordan coefficients that BmA,mB
lA,lB

is invariant under a transformation
that exchanges {lA,mA} with {lB,mB}

BmB,mA
lB,lA

= BmA,mB
lA,lB

. (7)

Consider a three-dimensional lattice of N = NxNyNz sites having coordinates (i, j, k) ∈ {1, . . . ,Nx} × {1, . . . ,Ny} ×

{1, . . . ,Nz} with periodic boundary conditions (PBC) in the x and y directions and free boundary conditions (FBC) on the z.
At each lattice point (i, j, k) is located an identical (microscopic) charge distributionwithmultipolemoments qml resembling
a molecule of C. We assume such an arbitrary configuration as a reference state of the system. Any other can be obtained
from it by multiple applications of the parity operator. The two states of a molecule can be more conveniently formalized
by defining a binary variable, Si,j,k = ±1 (often called spin by analogy with magnetism) at each lattice point. A general
multipole moment of a moleculeM ∈ C in any arbitrary state can, therefore, be expressed as

Q l,m
i,j,k = S li,j,kq

l,m, Si,j,k = ±1,

where S li,j,k denotes the variable Si,j,k to the power of l.
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