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a b s t r a c t

A new sliding mesh technique for finite element simulation of fluid–solid interaction problems with large
structural motions is presented in this paper. Fluid meshes surrounding a solid can slide each other to
accommodate a rotational motion of the solid, and a fluid mesh outside the sliding interface can translate
through a background fluid mesh. Because of relative motions of sliding fluid meshes and independently
designed fluid and solid meshes, non-matching meshes occur at their common interfaces. The
non-matching meshes are connected by using variable-node elements which guarantee the continuity,
the compatibility and the force equilibrium across the interfaces.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Finite element (FE) analysis of fluid–solid interaction (FSI) with
large structural motions is one of challenging problems in compu-
tational mechanics. Some computational difficulties have been
encountered and investigated for the FE simulation of fluid flows
with structural interactions. Among them, fluid mesh motions in
FSI analysis based on an Arbitrary Lagrangian–Eulerian (ALE) for-
mulation should follow the movement of solid boundaries, and
the choice of appropriate fluid mesh movement is important to
preserve acceptable element geometries in the fluid mesh when
a solid undergoes large motions. In particular, it is not a simple task
to satisfy interface boundary conditions along the FS interface
when a solid is moving freely in a fluid domain. Accordingly, an
efficient method is needed to prevent fluid mesh distortion near
the FS interface because a large motion of the solid can lead to a
distorted or tangled fluid mesh following the solid boundary.

Some techniques have been proposed for handling fluid mesh
movement [1–3] and a complex motion of the FS interface [4,5].
As an intrinsic approach, sliding mesh techniques have been tack-
led to solve the moving interface problems by many researchers.
Gartling [6] proposed a sliding mesh technique by using the mul-
ti-point constraint method; some or all of the dependent variables

from the slave mesh are constrained to be the interpolants of the
variables in the master mesh. Sieber and Schäfer [7] introduced a
sliding mesh technique by way of dynamic mesh scheme which
has the overlapped ghost cells on the sliding interface. The values
in the ghost cells are found by a linear interpolation between two
neighboring elements overlapping the inner cells. Behr and Tezdu-
yer [8] used the shear slip mesh update method to construct the
sliding mesh on the interface. This method is accomplished by
remeshing the elements in a thin zone of the mesh to undergo
shear deformation. To deal with a complex motion of the FS inter-
face, many researchers have used adaptive remeshing techniques.
However, adaptive remeshing techniques are not only time-
consuming but also require field variables remapping between
source and target meshes over the entire computational domain.
Peskin [9] proposed the immersed boundary method to study flow
patterns around heart valves. The immersed boundary method has
been extensively studied and applied to a wide variety of FSI prob-
lems [10–12]. This method solves the background fluid equations
with a fixed Eulerian mesh, and tracks a moving boundary to im-
pose FSI force and fluid velocity on the immersed boundary. Since
the solid domain described as a fiber network cannot occupy vol-
ume in the fluid domain, this assumption has a limitation in repre-
senting an arbitrary movement of submerged solid in a fluid
domain. Glowinski et al. [13] studied the interaction between fluid
and rigid solid by fictitious domain method. In their method, the
rigid solid is represented by a fictitious fluid with the same density
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and viscosity as the surrounding fluid. Wang and Liu [14] proposed
the immersed FE method which extends the immersed boundary
method adopting FE formulation for solid and fluid domains. As
an extension of the partition of unity method to arbitrary disconti-
nuities, the extended finite element method (XFEM) has been ap-
plied to solve FSI problems. Wagner et al. [15] applied the XFEM
to Stoke flows with rigid particles by using analytical solutions as
the partition of unity enrichment. Gerstenberger and Wall [16] ap-
plied the XFEM to solve FSI problems by using Heaviside function
as the enrichment. Although the XFEM has a great ability to repre-
sent the FS interface without fluid mesh movement, a method for
coupling non-matching meshes at the FS interface is still required
to impose the interface conditions.

Sliding mesh algorithms require a method to join dissimilar
meshes along the sliding interface. Many researches [17–20] have
used Lagrange multiplier and projection methods to connect non-
matching meshes. Jaiman et al. [21] proposed a projection method
for load transfer along the non-conforming interface, and Park et al.
[22] introduced the intermediate reference frame by localized La-
grange multipliers, which can be regarded as an independent inter-
face field. The mortar method as an efficient approach using
interface Lagrange multipliers has been developed to weakly im-
pose continuity of the velocity field along the non-conforming
interface between fluid and solid domains [23,24]. Casadei and Pat-
apov [25] proposed a generalized velocity compatibility condition
along the non-matching meshes, which enforces the fluid nodes
along the FS interface to follow the motion of a solid. Cavagna
et al. [26] proposed a mesh-free moving least square (MLS) method
to transfer nodal velocities and forces at the FS interface through a
conservation interpolation matrix which preserves the conserva-
tion of momentum and energy transfer between dissimilar fluid
and solid meshes. The accuracy of load transfer and the compatibil-
ity of displacements or velocities are not guaranteed when interpo-
lation or projection methods are used to transfer information along
the FS interface with non-matching meshes. Accordingly, an effec-
tive method for connecting non-matching meshes is required to
ensure the interface conditions of displacement compatibility
and traction equilibrium along the FS interface.

In general, it is not straightforward to satisfy interface condi-
tions such as compatibility, continuity and completeness condi-
tions between non-matching meshes in FE simulations of FSI
problems. Kim [27] introduced the interface element method
(IEM) to couple the non-matching meshes without any additional
process such as Lagrange multiplier technique and projection of
information between dissimilar meshes. Cho et al. [28] and Lim
et al. [29–32] extended the IEM to variable-node elements (VNEs)
by adding nodes on arbitrary sides of FEs with no harm to the
reproducing property and the interface conditions. Recently, Kim
[33] used this approach to connect the FS interface with non-
matching meshes between fluid and solid domains. While this
method with fluid nodes attached to solid surfaces leads to a se-
vere fluid mesh distortion or an element entanglement in FE sim-
ulations of FSI problems with large structural motions, here we
propose an efficient technique of sliding interfaces to provide a
good quality mesh in a fluid domain.

In this study, we develop a novel method to simulate FSI prob-
lems with a freely moving solid in a fluid domain. A motion of an
immersed solid is decomposed into rotational and translational
motions, and the fluid domain is discretized into three indepen-
dent meshes defined as ‘‘rotational fluid mesh’’, ‘‘translational fluid
mesh’’ and ‘‘background fluid mesh’’. The solid domain is included
in the rotational fluid mesh, which is again contained in the trans-
lational fluid mesh that moves through the background fluid mesh.
Rotational and translational motions of a solid are imposed on the
rotational fluid mesh and the translational fluid mesh, respectively.
A relative motion of fluid meshes at the boundary of the rotational

fluid mesh requires a special technique to connect non-matching
meshes at the sliding interface. In addition, independently de-
signed fluid and solid meshes due to different resolution require-
ments should be coupled properly at the FS interaction. We use
VNEs to accommodate the change of nodal arrangements and posi-
tions in elements bordering on the sliding interface. Since VNEs
satisfy the compatibility, continuity and completeness conditions
along the non-conforming interfaces, a seamless connection of
non-matching fluid meshes sliding each other can be achieved.
Moreover, the FS interface between independently designed
meshes in fluid and solid domains can also be connected by using
VNEs. The field variables can be transferred correctly through
VNEs, and the connection by using VNEs guarantees the force equi-
librium at nodes along the non-conforming interfaces. Conse-
quently, the present method can be very effective to solve FSI
problems with moving or rotating solids in a fluid.

2. Governing equations and discretizations

2.1. Governing equations

Since the fluid domain XF deforms substantially during the FSI
simulation with respect to the deformed solid domain, ALE formu-
lation is used to describe the fluid flow with deformable domain.
The ALE forms of the momentum conservation law and the conti-
nuity equation for incompressible flows can be written as

qF
@vF

@t
þ vF � $ð Þ � ðvF � vm

F Þ
� �

¼ qFg þ $ � rF in XF ð1Þ

$ � vF ¼ 0 in XF ð2Þ

where qF, g, vF, vm
F and rF denote the fluid density, the volume force,

the velocity of fluid particles, the velocity of fluid mesh and the fluid
stress tensor, respectively. The constitutive equation for Newtonian
fluids is written as

rF ¼ �pIþ lðr � vF þ vF �rÞ in XF ð3Þ

where l and p indicate the fluid viscosity and the pressure, respec-
tively. The conservation of momentum in the solid domain XS can
be expressed as

qS
@2uS

@t2 ¼ qSbþ $ � rS in XS ð4Þ

where qS, b, uS and rS denote the solid density, the body force, the
displacement of solid particles, and the solid stress tensor, respec-
tively. A rate-type constitutive equation is considered for the solid
domain as follows:

_sJ ¼ C : _e ð5Þ

where _e and C are the rate of strain tensor and the instantaneous
stiffness tensor, respectively. Furthermore, _sJ means the Jaumann
objective rate of the Kirchhoff stress. This equation is known to de-
pict an isotropic constitutive behavior of linear elastic bodies
undergoing finite rotations with small elastic strains when C is cho-
sen to be the constant linear stiffness tensor for isotropic elastic
materials.

2.2. Weak formulations and interface conditions

The computation of the incompressible fluid requires the stabi-
lized FE formulation to overcome the numerical instability caused
by advection-dominated condition and inappropriate combination
of interpolation functions for the velocity and the pressure. The sta-
bilization for the fluid flow is achieved by the streamline-upwind
Petrov–Galerkin (SUPG), the pressure stabilized Petrov–Galerkin
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