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a b s t r a c t

This study shows that the deformed configuration space of 3D rods can be spanned in an objective man-
ner by means of a semi-configuration-dependent approach. We employ a partially dependent default
rotational triad defined using the spatial reference curve, a custom director-unit-vector, and a
twisting-like-angle interpolation to obtain the true orientations of the cross-sections. Numerical verifica-
tion shows that, rotating the custom director-unit-vector in conjunction with the element’s first node,
strain measure objectivity is ensured throughout the element domain. Employing the fundamental the-
orem of calculus, this simple but accurate finite-element implementation need not invoke the virtual
work principle in the classical sense.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Geometrically non-linear analysis of 3D framed structures has
received considerable research attention. Among the various
non-linear beam theories, Reissner’s formulation [1] in the plane-
frame case inspired other researchers. The theory was later
extended to three dimensions with valuable contributions to its
finite-element implementation by numerous authors [2–8]. Beam
models of this type have been coined ‘‘geometrically exact”
because, although the formulations assume non-deformability of
cross-sections [9], the relationships between the configuration
and the strain measures are consistent with the virtual work prin-
ciple and the equilibrium equations at a deformed state regardless
of the magnitude of displacements, rotations, and strains. A dis-
tinctive feature of this approach is that the kinematic variables at
every point of the model include both displacements and rotations;
hence it can be classified as a Cosserat theory [10]. Within the con-
text of the theory, rotation parameters have been chosen in various
ways [11–14]. Ibrahimbegovic [12] investigated the possibility of
selecting the parameters for finite rotation representations from
nine-parameter intrinsic orthogonal tensor representation to
three-parameter representation using the so-called rotation vector.
Jelenić and Saje [14] proposed a generalized form of the principle
of virtual work by forcing the exact kinematic equations using
a procedure similar to that of Lagrangian multipliers while

eliminating the displacement variables of the model and retaining
only rotational degrees of freedom. As they belong to a nonlinear
manifold, 3D rotation variables must be chosen and treated care-
fully in order to maintain the characteristics of the rotation field
during non-additive updates made in the context of the finite ele-
ment method. Crisfield and Jelenić [9] showed that interpolation of
the total rotational vector makes the resulting strain measures
dependent on rigid-body rotation and proposed an objective setup
based on interpolation of relative rotations. Their discussion paved
the way for increasing attention to objectivity [15] and several
alternative objective formulations [10,16–18] were later proposed.

A kinematic hypothesis in conjunction with the virtual work
principle is considered a prerequisite in the studies mentioned
above. On the other hand in [19], Smoleński argued that knowl-
edge of 3D kinematics is not necessary for construction of the glo-
bal theory of spatial rods. He successfully employed the definition
of the standard definite-integration algorithm to extract the rod
theory’s general equilibrium equation from the 3D continuum bal-
ance laws and proposed a formulation by averaging these equa-
tions over the problem’s domain. At the same time, he suggested
that the only place for approximations in the theory of rods is in
the constitutive relations.

There exist some other popular formulations to solve geometri-
cally nonlinear beam problems. The co-rotational approach,
viewed as an alternative way of deriving efficient non-linear finite
elements for problems with large displacements but small strains,
has garnered increased interest [20–26]. The main idea in this
context is separation of rigid-body and purely deformational
motion of the element through the use of a following frame which
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continuously rotates and translates with the element. The defor-
mational response is captured at the level of this frame, whereas
the geometric nonlinearity induced by large rigid-body motion is
incorporated in the transformation matrices relating local and glo-
bal internal force vectors and tangent stiffness matrices. Assuming
the pure deformation part to be small, a geometric linear theory
can be used in the local system. It is also shown in [21,22] that
the co-rotational technique does not necessarily suffer from the
disadvantages of using a finite rotational transformation.

In order to avoid rotational freedoms, an absolute nodal coordi-
nate formulation (ANCF) was developed by Shabana [27,28] using
absolute nodal position and slope degrees of freedom for the inter-
polation of the position field of beam elements; this uncovered 24
nodal degrees of freedom instead of 12 using a conventional two-
node beam element. Other rotation-free methods [29,30] are also
used to overcome the disadvantages of finite rotations, such as
an unconventional finite element method in which rotations are
not used as degrees of freedom and the element interpolation
domains overlap.

Jonker and Meijaard [31] defined a set of independent, discrete
deformation modes (DDM), related to conventional small-
deflection beam theory, in a co-rotational frame by including geo-
metric nonlinearities as additional second-order terms. This
allowed them to express their influence on displacement, espe-
cially for bifurcation points where the load–deflection characteris-
tics change drastically.

The formulation presented in this study is differs in several
ways from the formulations summarized above. Initially, it bears
resemblance to the co-rotational formulation; however, it is a dif-
ferent approach in the sense that both material and spatial refer-
ence curves are interpolated directly within their own attached
local coordinate systems (ALCS) through their projections onto
the ALCS planes, and deformations relative to the spatial ALCS
are not restricted to be small. Expected accuracy for a coarse mesh
is strictly correlated with parameterization and interpolation of
both material and spatial configurations. An initially curved beam
formulation helps greatly in this regard. Moreover, following the
beam, the ALCS improves the interpolation capacity of the refer-
ence curve for representing the equilibrium configuration of the
system with a relatively small number of elements. The spatial
ALCS is defined in terms of nodal translations and total rotation
of the element’s first node, and it is deliberately selected to main-
tain objectivity in the discretized domain.

The presented formulation also shares a similar formalism with
geometrically exact beam theory except that the effects of shear
rotations are not accounted for and the virtual-work equations
are exchanged for equivalent equations derived from the funda-
mental theorem of calculus. In so doing, we eliminate the use of
virtual terms and the integration of stress resultants within the
element domain, leading to very basic structure in the equilibrium
equations. In this context, the present formulation has more fea-
tures in common with the formulation presented in [19] than with
any other. Our treatment of the finite rotations is also somewhat
unique. From our point of view, the underlying cause of non-
objectivity is the independent interpolation of the translation
and the rotation fields. Instead of directly interpolating the total
rotation vector, we transform the end-point principle axes using
the Rodrigues’ rotation formula and extract the local slopes of
the spatial reference curve in conjunction with the spatial ALCS.
In this way, we cover all dependencies between the translation
and rotation fields of the spatial domain. Using the reference
curve’s tangent vector field, we propose a custom triad and a cus-
tom twisting-like angle, which serves as a rotational freedom, to
find the true configuration of the cross sections. As the proposed
angular freedom is the only rotational variable independent from
the translational field, we have safely adapted a linear interpola-

tion to this custom field. One of the prominent features of the pro-
posed formulation is that it does not require the extraction of
rotational parameters from the rotation matrix, unlike the method
in [9]. Finally, we present the equations for evaluating the nodal
values of the proposed angle in terms of the nodal rotation vector.
Since the proposed formulation relies firmly on both the nodal and
internal cross-sections’ transformations, we deem it suitable to
name it the ‘‘principal axes transformation” (PAT) formulation.

An outline of the rest of the article is as follows. Section 2 sum-
marizes the definition of a custom rotational field, including the
Frenet–Serret (FS) frame, when provided the tangent vector field
of a space curve. The section also exposes some drawbacks of the
FS frame in a simple fashion. In Section 3, the parameterization
of the material configuration is covered in detail. Section 4 presents
the parameterization of the spatial domain and the expression for
finding the actual cross-section orientations by means of the
twisting-like angle. This section also exhibits the way we con-
structed the finite-element setup. The next three sections describe
the constitutive model, objectivity verification of the strain mea-
sures, and a summary of the solution algorithm, respectively. In
Section 8, the accuracy and rate of convergence of the proposed
formulation are investigated in several examples with different
characteristics, such as large deflection of a cantilever rod, large
deflection of an arc-shaped rod with mixed boundary conditions
subjected to distributed loading, and a deployable circular ring
problem. The article is concluded with a summary and discussion
of the possible extension of the presented formulation in Section 9.

2. Default rotational field

Before presenting the proposed formulation, we consider it nec-
essary to express the way we construct our custom orthonormal
triad: Ai 2 R3; i ¼ 1;2;3, related to the Cartesian frame bases Ei

through a transformation H 2 SOð3;RÞ as Ai ¼ HEi, where
SOð3;RÞ is the 3D rotation group of proper orthogonal transforma-
tions. Strictly speaking, H is a 3� 3 rotation matrix with its col-
umns being the column vectors Ai arranged in the form:
H ¼ ½A1;A2;A3�. Given any vector A1 2 R3 with kA1k ¼ 1, the space
of HðA1;A2;A3Þ reduces to HðA1; eÞ as in

HðA1; eÞ ¼ A1; ÂT
1A1e;A1e

h i
ð1Þ

where e 2 R3 is an arbitrary unit vector denoting an arbitrary direc-
tion with the restriction e is not parallel to A1. In Eq. (1), A1e is also a
unit vector defined with cross-product operations as

A1e ¼ A1 � e=kA1 � ek ¼ Â1e=kÂ1ek ð2Þ
which ensures that A1e ? A1. In the equations above and through-
out the text, the hat denotes a skew-symmetric matrix so that

Â1 ¼
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
64

3
75 ð3Þ

where ai are the components of A1. At this point, one can argue that
HðA1; eÞ hosts four degrees of freedom instead of three; however,
one should also consider that the component of e parallel to A1 is
obsolete. If A1 is bound to a space curve s ! rcðsÞ 2 R3, forming a
vector field s ! A1ðrcðsÞÞ 2 R3 with a tangent relation as
A1ðsÞ ¼ r0cðsÞ, where the apostrophe denotes ð�Þ0 ¼ dð�Þ=ds while s is
the arc-length, then one can find the curve’s intrinsic frame (called
the Frenet–Serret frame or TNB frame) by substituting eðsÞ ¼ r00c ðsÞ
into Eq. (1). However, the Frenet–Serret frame is highly dependent
on the space curve rcðsÞ through differentiation, which makes
principal cross-section directions hard to interpret, especially for
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