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h i g h l i g h t s

• We introduce adhesion to single-file dynamics.
• Adhesion causes a noticeable convergence in the particle trajectories.
• The probability-density functions of single-file and ordinary diffusion are identical.
• The collective single-file diffusion is nonanomalous.
• The diffusion of the individual tagged articles is anomalous sub-diffusive.
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a b s t r a c t

For a one-dimensional interacting system of Brownian particles with hard-core interac-
tions (a single-file model), we study the effect of adhesion on both the collective diffusion
(diffusion of the entire system with respect to its center of mass) and the tracer diffusion
(diffusion of the individual tagged particles). For the case with no adhesion, all properties
of these particle systems that are independent of particle labeling (symmetric in all particle
coordinates and velocities) are identical to those of non-interacting particles (Lebowitz and
Percus, 1967). We clarify this last fact twice. First, we derive our analytical predictions that
show that the probability-density functions of single-file (ρsf ) and ordinary (ρord) diffusion
are identical, ρsf = ρord, predicting a nonanomalous (ordinary) behavior for the collective
single-file diffusion, where the average secondmoment with respect to the center of mass,
⟨x(t)2⟩, is calculated from ρ for both diffusion processes. Second, for single-file diffusion,
we show, both analytically and through large-scale simulations, that ⟨x(t)2⟩ grows linearly
with time, confirming the nonanomalous behavior. This nonanomalous collective behavior
comes in contrast to the well-known anomalous sub-diffusion behavior of the individual
tagged particles (Harris, 1965). We introduce adhesion to single-file dynamics as a second
inter-particle interaction rule and, interestingly, we show that adding adhesion does re-
duce the magnitudes of both ⟨x(t)2⟩ and the mean square displacement per particle ∆x2;
but the diffusion behavior remains intact independent of adhesion in both cases. More-
over, we study the dependence of both the collective diffusion constant D and the tracer
diffusion constant DT on the adhesion coefficient α.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Single-file dynamics refers to the one-dimensional diffusion of incompressible Brownian particles (so-called tracer or
tagged particles) with hard-core interactions, and it has been widely used to model numerous systems such as the diffusion
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of a single molecule in a crowded one-dimensional environment such as nanochannels [1–4], experimentally studied
physical systems such as zeolites [5], confined colloid particles [6–9], and charged spheres in circular channels [10], and
particles with long-range interactions [11]. The particles’ incompressibility implies that their mutual passage is excluded.
Since the sequence of particles in such a situation remains unaffected over time, this leads to deviation fromnormal diffusion.
For an infinite system and uniform initial particle density, Harris [12] and Levitt [13] first showed that the diffusion of a
tagged particle is anomalous sub-diffusive (where the tracer particle’s mean square displacement grows as the square root
of time, 1x2 ∼ t1/2), rather than normal (where 1x2 ∼ t); because the diffusion of a tagged particle is always hindered
by collisions with all surrounding particles (the many-body confinement effect). This many-body problem has been treated
using the methods of Percus [14,15], Lebowitz [16], and Jepsen [17].

All statistical properties of single-file systems that are insensitive to the labeling of the individual tagged particles are
identical to those of non-interacting particles [16]. One such property is the probability-density function ρ from which the
average secondmomentwith respect to the center ofmass ⟨x(t)2⟩ can be obtained. The collective single-file diffusion, which
is the diffusion of an entire particle system with respect to a reference point such as the center of mass, is characterized
by monitoring the time evolution of ⟨x(t)2⟩. Since ⟨x(t)2⟩ is an insensitive quantity, the collective single-file diffusion is
nonanomalous, exactly as the diffusion of non-interacting particles, where ⟨x(t)2⟩ grows linearly with time.

The role of adhesion in the diffusion of many physical systems in nature (most prominently polymers) is an area of
great interest [18–32]. In this paper, we introduce adhesion to single-file dynamics and examine its effect on both the
nonanomalous behavior of the collective single-file diffusion and the anomalous sub-diffusion behavior of the individual
tagged particles, where we conduct extensive computer simulations, which exploit Monte-Carlo techniques and high-
performance computing resources, to study the time evolutions of both ⟨x(t)2⟩ and1x2 for a range of values of the adhesion
coefficientα.Moreover,we study the dependence of both the collective diffusion constantD and the tracer diffusion constant
DT on α.

In Section 2 we discuss the simulation method behind our numerical results. The nonanomalous behavior of the
collective single-file diffusionwith no adhesion is discussed in detail in Section 3, including our analytical predictions for the
probability-density functions of both single-file (ρsf ) and ordinary (ρord) diffusion. In Section 4wepresent our computational
results for the time evolutions of both ⟨x(t)2⟩ and 1x2 at various α values and the dependence of both D and DT on α.
Moreover, we examine the particle trajectories both with and without adhesion.

2. Simulation method

We start with a one-dimensional lattice that consists of Nsites sites (in our model Nsites = 10 001). The x coordinates of
the leftmost, central, and rightmost sites are −5000, 0, and 5000, respectively. The single-file restriction implies that each
site can be occupied by one particle at most at any moment in time. The initial state (at time t = 0) is configured as follows.
We distribute particles only within the 1000 sites closest to the center of the lattice (x = 0); that is, for example, if the local
particle density φ is 0.5, we distribute 500 particles among the 1000 central sites uniformly, with an occupied site followed
by an empty site, and so forth. The number of particles has to be much smaller than the number of sites; because [as we
will show in detail in the computational-results section, where we will let the particle system evolve for two million time
steps (see Fig. 3)] this will help avoid the particles reaching the two ends of the lattice (before the simulation ends) then
bouncing back in, causing a retarded diffusion. For such an initial configuration, the anomalous sub-diffusion behavior of
the individual tagged particles is expected to be exhibited by core particles at early times (before a significant drop in the
average particle density takes place), as will be discussed in Section 4.

The particle system evolves with time as follows. We take the system through a specific number of time (Monte-Carlo)
steps. In each time step, every particle in the system is considered once in a random order, where a hopping direction is
picked for every particle at random, either to the right or left, with a probability of 1/2 for each. For a given particle, let us
assume that the chosen direction is to the right, the transition probability to the right site, T+

i , is expressed as

T+

i = (1 − ui+1)(1 − αui−1), (1)

where uj is the occupancy states of the sites (1 if occupied and 0 if empty); see Fig. 1 for possible numerical values of T+

i .
Similarly, the transition probability to the left site is given by

T−

i = (1 − ui−1)(1 − αui+1). (2)

As the system evolves with time, ⟨x(t)2⟩ is calculated according to

⟨x(t)2⟩ =

N
i=1

xi(t)2, (3)

where N is the total number of particles in the simulation and xi(t) is the displacements of the particles with respect to the
origin (x = 0).
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