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h i g h l i g h t s

• Effects of power-law noise on the renormalizability of a chemical model is studied.
• Our reaction–diffusion cubic autocatalytic model is renormalizable at one-loop.
• Effects of noise-generated higher order interactions are discussed.
• We show how ideas of effective field theory can be applied to this chemical model.
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a b s t r a c t

We study the effect of external power-law noise on the renormalizability of a specific
reaction–diffusion system of equations describing a cubic autocatalytic chemical reaction.
We show that changing the noise exponent modifies the divergence structure of loop
integrals and thus the renormalizability of themodel. The effects of noise-generated higher
order interactions are discussed. We show how noise induces new interaction terms that
can be interpreted as a manifestation of some (internal) ‘‘chemical mechanism’’. We also
show how ideas of effective field theory can be applied to construct a more fundamental
chemical model for this system.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The nature of chemical reaction mechanisms is a scale dependent problem of great practical and theoretical
importance [1], often studied using spectroscopic or other analytical (in the chemical sense) techniques. A key question
in chemistry and biology is to understand the mechanisms and chemical reactions underlying the macroscopic behavior of
complex systems such as cells. Answering the above question is of course a daunting task. However, given the ubiquity and
relevance of these systems, it is important to try to gain insight from simpler, more tractable models.

In this paper we approach the question of inferring the small scale (ultraviolet, UV) structure of a system known at large
scales (infrared, IR) in the context of stochastic reaction–diffusion equations. In otherwords,we fine-grain those equations in
order to study the underlyingmechanisms from the large scale dynamics, i.e. we are using a top-down (outside-in) approach
(e.g. [2]). Although they are relatively simple, reaction–diffusion equations lead to complex patterns [3] and are thought to
be an essential part of morphogenesis [4–6]. In addition to serve as models for biological pattern formation, they are also
used in various contexts such as the spreading of epidemics [7], ecological invasions [8], tumor growth [9] and oscillating
chemical reactions [3,10].

∗ Correspondence to: Department of Earth and Planetary Sciences, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142-1204, USA.
E-mail addresses: gagnon01@fas.harvard.edu (J.-S. Gagnon), jperezmercader@fas.harvard.edu (J. Pérez-Mercader).

http://dx.doi.org/10.1016/j.physa.2017.04.002
0378-4371/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2017.04.002
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2017.04.002&domain=pdf
mailto:gagnon01@fas.harvard.edu
mailto:jperezmercader@fas.harvard.edu
http://dx.doi.org/10.1016/j.physa.2017.04.002


52 J.-S. Gagnon, J. Pérez-Mercader / Physica A 480 (2017) 51–62

For definiteness, we focus on a particular reaction–diffusion model [11,12] based on a cubic autocatalytic two-species
system [13–18]. This simple model has a very interesting phenomenology. Numerical simulations of the deterministic [11]
and stochastic [12] versions of themodel show the formation of domains (‘‘cells’’). These domains share some characteristics
with living systems like birth, growth, movement, replication and death. Understanding the inner dynamics of such a simple
system might provide insight into real, more complex organisms.

The analysis of stochastic reaction–diffusion equations can be couched in the language of field theory (e.g. [19]). In the
following, we outline the first steps in a new approach to study the above cubic autocatalytic reaction–diffusion (CARD)
model, that could in principle be applied to other reaction–diffusion systems. A hallmark of our method is the use of a fine-
graining strategy more akin to the philosophy in particle physics, in contrast to the coarse-graining methods typically used
in condensed matter physics. In other words, we apply the renormalization group to the CARDmodel, but run it from the IR
to the UV. The latter strategy is natural in the context of findingmore fundamental microscopic models from the knowledge
of a macroscopic one.

Another important ingredient in our approach is the use of noise to represent the combined contributions of both inter-
nal degrees of freedom and environmental effects. We argue that we may use externally tunable noise to probe reaction–
diffusion equations at small scales, in the sameway that varying beamenergy is used to study the inner structure of particles.

The above approach has been applied to the study of small-scale structures in the CARD model [20,21]. In the present
contribution, we develop themore general aspects of the approach. The rest of the paper is organized as follows. In Section 2,
we present the general idea behind our fine-grainingmethod and its potential relevance to reaction–diffusion equations and
chemistry. In particular, we show how self-consistent approaches (i.e. renormalizability, effective interactions, decoupling,
see for example [22–27]) could allow the analysis of the system’s inner structures. The specific details of the CARD model
are introduced in Section 3. Section 4 presents the proof of renormalizability of the CARDmodel at one-loop and the effects
of higher order interactions on the dynamics, paving the way for our discussion of effective field theory in chemistry in
Section 5. We discuss our results in Section 6. Feynman rules for the CARD model and technical details about the proof of
renormalizability are relegated to the Appendices.

2. Methodology and goals

The goal of this section is to explain our method for studying underlying mechanisms in a broader setting. But first, let
us briefly review how effective field theory is used to uncover clues about fundamental theories in particle physics.

The parameters of the Standard Model of particle physics are measured with great precision up to energies ΛSM ∼

few TeV. Quantum fluctuations make the parameters of the model energy dependent, and renormalization is a tool that
enables the computation of this energy dependence. The Standard Model is renormalizable, meaning that it is possible
to extend its domain of validity (i.e. ‘‘run’’ the parameters) up to arbitrary high energies. But experiments (on neutrino
oscillations, baryon asymmetry, darkmatter, dark energy) show that the StandardModel is incomplete and that newphysics
must exist at a higher energy scale ΛNP. This implies that the running of the Standard Model parameters can only be done
up to energy ΛNP: above this energy, a new model (with potentially new dynamical degrees of freedom) must be used.

Experimentally, it is difficult to directly detect and measure the effects of new physics if ΛNP is larger than the energy of
present day accelerators. Effective field theory provides another way of probing new physics at energyΛNP. The basic tenets
of effective field theory [24] tell us that the values of the Standard Model parameters at low energy ΛSM include corrections
due to higher energy processes that are suppressed by powers of the high energy scale. In our example, if new physics
appears at ΛNP, then corrections to the parameters are of the form (ΛSM/ΛNP)

|power|. Thus if ΛNP ≫ ΛSM, those corrections
are very small and might not be measurable. This is why Planck scale physics has no hope of being measured with current
technologies. But if the ratio is not too small, it might be possible to gain insight into more fundamental theories by looking
at corrections in the Standard Model parameters.

Let us now show how these concepts can be applied to chemistry. As an illustrative example, let us take the following
macroscopic chemical equation:

2H2 + O2
k

→ 2H2O (1)
where k is the (forward) reaction rate. This chemical equation is valid at large temporal and spatial scales (corresponding
to lowmomentum or resolution). At shorter temporal and spatial scales, the above description might break down andmust
be replaced by another one. One example of microscopic description is:

O2
k1
→ 2O

2H2 + 2O
k2
→ 2H2O. (2)

Another possible microscopic description is:

H2 + O2
k1
→ 2OH

H2
k2
→ 2H

2H + 2OH
k3
→ 2H2O. (3)
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