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a b s t r a c t

Free vibration of axially loaded thin-walled composite beams with arbitrary lay-ups is presented. This
model is based on the classical lamination theory, and accounts for all the structural coupling coming
from material anisotropy. Equations of motion for flexural–torsional coupled vibration are derived from
the Hamilton’s principle. The resulting coupling is referred to as triply coupled vibrations. A displace-
ment-based one-dimensional finite element model is developed to solve the problem. Numerical results
are obtained for thin-walled composite beams to investigate the effects of axial force, fiber orientation
and modulus ratio on the natural frequencies, load–frequency interaction curves and corresponding
vibration mode shapes.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Fiber-reinforced composite materials have been used over the
past few decades in a variety of structures. Composites have many
desirable characteristics, such as high ratio of stiffness and
strength to weight, corrosion resistance and magnetic transpar-
ency. Thin-walled structural shapes made up of composite materi-
als, which are usually produced by pultrusion, are being
increasingly used in many engineering fields. However, the struc-
tural behavior is very complex due to coupling effects as well as
warping-torsion and therefore, the accurate prediction of stability
limit state and dynamic characteristics is of the fundamental
importance in the design of composite structures.

The theory of thin-walled members made of isotropic materials
was first developed by Vlasov [1] and Gjelsvik [2]. Up to the pres-
ent, investigation into the stability and vibrational behavior of
these members has received widespread attention and has been
carried out extensively. Closed-form solution for the flexural and
torsional natural frequencies, critical buckling loads of isotropic
thin-walled bars are found in the literature (Timoshenko [3,4]
and Trahair [5]). For some practical applications, earlier studies
have shown that the effect of axial force on the natural frequencies
and mode shapes is more pronounced than those of the shear
deformation and rotary inertia. Many numerical techniques have
been used to solve the dynamic analysis of thin-walled members.
One of the most effective approach is to derive the exact stiffness
matrices based on the solution of the governing differential equa-
tions of motion. Most of those studies adopted an analytical meth-
od that required explicit expressions of exact displacement

functions for governing equations. Although a large number of
studies have been performed on the dynamic characteristics of axi-
ally loaded isotropic thin-walled beams [6–9], it should be noted
that by using this method there appear some works reported on
the free vibration of axially loaded thin-walled closed-section com-
posite beams (Banerjee et al. [10–12], Li et al. [13,14] and Kaya and
Ozgumus [15]). For thin-walled open-section composite beams,
the works of Kim et al. [16–18] deserved special attention because
they evaluated not only the exact element stiffness matrix but also
dynamic stiffness matrix to perform the spatially coupled stability
and vibration analysis of thin-walled composite I-beam with arbi-
trary laminations. By using finite element method, Bank and Kao
[19] analyzed free and forced vibration of thin-walled composite
beams. Cortinez, Machado and Piovan [20,21] presented a theoret-
ical model for the dynamic analysis of thin-walled composite
beams with initial stresses. Machado et al. [22] determined the re-
gions of dynamic instability of a simply supported thin-walled
composite beam under an axial excitation. The analysis was based
on a small strain and moderate rotation theory, which was formu-
lated through the adoption of a second-order displacement field. In
their research [20–22], thin-walled composite beams for both open
and closed cross-sections and the shear flexibility (bending, non-
uniform warping) were incorporated. However, it was strictly valid
for symmetric balanced laminates and especially orthotropic lam-
inates. By using a boundary element method, Sapountzakis and
Tsiatas [23] solved the flexural–torsional buckling and vibration
problems of Euler–Bernoulli composite beams with arbitrarily
cross section. This method overcame the shortcoming of possible
thin tube theory solution, which its utilization had been proven
to be prohibitive even in thin-walled homogeneous sections.

In this paper, which is an extension of the authors’ previous
works [24–27], flexural–torsional coupled vibration of axially
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loaded thin-walled composite beams with arbitrary lay-ups is pre-
sented. This model is based on the classical lamination theory, and
accounts for all the structural coupling coming from the material
anisotropy. The governing differential equations of motion are de-
rived from the Hamilton’s principle. A displacement-based one-
dimensional finite element model is developed to solve the prob-
lem. Numerical results are obtained for thin-walled composite
beams to investigate the effects of axial force, fiber orientation
and modulus ratio on the natural frequencies and load–frequency
interaction curves as well as corresponding vibration mode shapes.

2. Kinematics

The theoretical developments presented in this paper require
two sets of coordinate systems which are mutually interrelated.
The first coordinate system is the orthogonal Cartesian coordinate
system (x, y, z), for which the x and y axes lie in the plane of the
cross section and the z axis parallel to the longitudinal axis of
the beam. The second coordinate system is the local plate coordi-
nate (n, s, z) as shown in Fig. 1, wherein the n axis is normal to
the middle surface of a plate element, the s axis is tangent to the
middle surface and is directed along the contour line of the cross
section. The (n, s, z) and (x, y, z) coordinate systems are related
through an angle of orientation h. As defined in Fig. 1 a point P,
called the pole, is placed at an arbitrary point xp; yp. A line through
P parallel to the z axis is called the pole axis.

To derive the analytical model for a thin-walled composite
beam, the following assumptions are made:

1. The contour of the thin wall does not deform in its own plane.
2. The linear shear strain �csz of the middle surface is zero in each

element.
3. The Kirchhoff–Love assumption in classical plate theory

remains valid for laminated composite thin-walled beams.
4. Each laminate is thin and perfectly bonded.
5. Local buckling is not considered.

According to assumption 1, the midsurface displacement com-
ponents �u; �v at a point A in the contour coordinate system can be
expressed in terms of a displacements U, V of the pole P in the x,
y directions, respectively, and the rotation angle U about the pole
axis,

�uðs; zÞ ¼ UðzÞ sin hðsÞ � VðzÞ cos hðsÞ �UðzÞqðsÞ ð1aÞ
�vðs; zÞ ¼ UðzÞ cos hðsÞ þ VðzÞ sin hðsÞ þUðzÞrðsÞ ð1bÞ

These equations apply to the whole contour. The out-of-plane shell
displacement �w can now be found from the assumption 2. For each
element of middle surface, the shear strain become

�csz ¼
@�v
@z
þ @

�w
@s
¼ 0 ð2Þ

After substituting for �v from Eq. (1) and considering the following
geometric relations,

dx ¼ ds cos h ð3aÞ
dy ¼ ds sin h ð3bÞ

Eq. (2) can be integrated with respect to s from the origin to an arbi-
trary point on the contour,

�wðs; zÞ ¼WðzÞ � U0ðzÞxðsÞ � V 0ðzÞyðsÞ �U0ðzÞxðsÞ ð4Þ

where differentiation with respect to the axial coordinate z is de-
noted by primes (0); W represents the average axial displacement
of the beam in the z direction; x and y are the coordinates of the
contour in the (x, y, z) coordinate system; and x is the so-called sec-
torial coordinate or warping function given by

xðsÞ ¼
Z s

s�

rðsÞds ð5aÞ

The displacement components u,v,w representing the deformation
of any generic point on the profile section are given with respect
to the midsurface displacements �u; �v ; �w by the assumption 3.

uðs; z; nÞ ¼ �uðs; zÞ ð6aÞ

vðs; z;nÞ ¼ �vðs; zÞ � n
@�uðs; zÞ
@s

ð6bÞ

wðs; z;nÞ ¼ �wðs; zÞ � n
@�uðs; zÞ
@z

ð6cÞ

The strains associated with the small-displacement theory of elas-
ticity are given by

�s ¼ ��s þ n�js ð7aÞ
�z ¼ ��z þ n�jz ð7bÞ
csz ¼ �csz þ n�jsz ð7cÞ

where

��s ¼
@�v
@s

; ��z ¼
@ �w
@z

ð8aÞ

�js ¼ �
@2�u
@z2 ; �jz ¼ �

@2�u
@z2 ; �jsz ¼ �2

@2�u
@s@z

ð8bÞ

All the other strains are identically zero. In Eq. (8), ��s and �js are as-
sumed to be zero. ��z; �jz and �jsz are midsurface axial strain and biax-
ial curvature of the shell, respectively. The above shell strains can be
converted to beam strain components by substituting Eqs. (1), (4)
and (6) into Eq. (8) as

��z ¼ ��z þ xjy þ yjx þxjx ð9aÞ
�jz ¼ jy sin h� jx cos h� jxq ð9bÞ
�jsz ¼ 2�vsz ¼ jsz ð9cÞ

where ��z ;jx;jy;jx and jsz are axial strain, biaxial curvatures in the
x and y direction, warping curvature with respect to the shear cen-
ter, and twisting curvature in the beam, respectively defined as

��z ¼W 0 ð10aÞ

jx ¼ �V 00 ð10bÞ

jy ¼ �U00 ð10cÞ

jx ¼ �U00 ð10dÞ

jsz ¼ 2U0 ð10eÞFig. 1. Definition of coordinates in thin-walled open sections.
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