
Incomplete factorization preconditioners for the iterative solution
of Stochastic Finite Element equations

Dimos C. Charmpis *

Department of Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos Str., P.O. Box 20537, 1678 Nicosia, Cyprus

a r t i c l e i n f o

Article history:
Received 8 November 2008
Accepted 29 September 2009
Available online 11 November 2009

Keywords:
Monte Carlo simulation
Stochastic Finite Element
Conjugate gradient method
Iterative solution
Preconditioner
Incomplete factorization

a b s t r a c t

This work is focused on enhancing the computational efficiency in Monte Carlo simulation-based Sto-
chastic Finite Element (SFE) analysis of large-scale structural models. Such analyses require the solution
of successive systems of equations derived during simulations, which can be efficiently treated using cus-
tomized versions of the iterative Preconditioned Conjugate Gradient (PCG) solution method. PCG-cus-
tomization is localized at the preconditioning matrix employed to accelerate convergence. Thus,
specialized preconditioners following the rationale of incomplete factorization are presented, which
retain only essential numerical information during factorization. The resulting PCG-based solution
schemes allow for computationally efficient SFE analyses with low storage demands in computer
memory.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The Stochastic Finite Element (SFE) method is a widely appreci-
ated approach to treat structural mechanics applications involving
uncertain material and geometric properties with spatial distribu-
tion. The research efforts devoted during the last decades to the
field of stochastic structural mechanics have led to the develop-
ment of various rather sophisticated SFE formulations, however
considerably less progress has been reported on the computational
efficiency and feasibility of such formulations when confronted
with large-scale real-world problems. As a result, SFE applications
usually involve intentionally simple and small-scale structural
models and the results obtained are of limited practical impor-
tance. This unfavorable situation is expected to improve with the
development, continuous upgrade and wide availability of power-
ful and efficient SFE software.

The computational burden associated with SFE analyses may be
substantially reduced by appropriately handling the most demand-
ing tasks in terms of processing power and storage space needs.
The Monte Carlo (MC) simulation technique, which is the most
effective and widely applicable method for handling large-scale
SFE problems with complicated structural response, involves
expensive computations due to the successive analyses required.
More specifically, assuming deterministic loads and a linear static
SFE problem, successive linear systems of equations with multiple
left-hand sides have to be processed, since the stiffness matrix

changes in every simulation. The standard direct method based
on Cholesky factorization remains the most popular scheme for
solving such equations, however this solution approach exhibits
poor performance for large-scale problems and may lead to practi-
cally infeasible computations (in terms of required computing
time) when the number of MC simulations to be performed is
not small. Hence, the effective and efficient handling of SFE equa-
tions has emerged as a research topic of special interest and impor-
tance within the SFE community and a number of related
publications have appeared dealing with MC simulation-based
and other SFE formulations (e.g. [1–8]).

The deficiencies of the direct solution approach can be over-
come with the use of a customized version of the Preconditioned
Conjugate Gradient (PCG) method, which allows the adaptation
of this solution scheme to the special features of nearby problems
encountered in Finite Element (FE) reanalyses [2,5]. PCG can be
customized to take into account the relatively small differences be-
tween stiffness matrices in successive simulations, avoiding this
way the treatment of each simulation’s system as a stand-alone
problem. PCG-customization is localized at the preconditioning
matrix employed to accelerate PCG convergence during the succes-
sive FE solutions. Hence, the reanalysis problems can be effectively
solved using the PCG algorithm equipped with a preconditioner
following the rationale of incomplete Cholesky preconditionings.
According to this rationale, the preconditioning matrix may be ta-
ken as the complete factorized stiffness matrix of the initial simu-
lation. With the preconditioning matrix remaining the same during
the successive FE reanalyses, the repeated solutions required for
the preconditioning step of the PCG algorithm can be efficiently

0045-7949/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruc.2009.09.010

* Tel.: +357 22 89 2202; fax: +357 22 89 2295.
E-mail address: charmpis@ucy.ac.cy

Computers and Structures 88 (2010) 178–188

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

http://dx.doi.org/10.1016/j.compstruc.2009.09.010
mailto:charmpis@ucy.ac.cy
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


treated as problems with multiple right-hand sides. Therefore, the
stiffness matrix of the initial simulation is retained in memory in a
factorized form throughout all simulations.

The present work further enhances the aforementioned cus-
tomized PCG solution approach by proposing alternative precondi-
tioning schemes, which are based on incomplete factorizations of
the stiffness matrix of the initial simulation. Such preconditioners
aim in retaining only the essential numerical information during
the factorization of the initial stiffness matrix. Thus, the matrix
terms stored during factorization are selected based on their posi-
tion within the initial stiffness matrix (incomplete factorization by
position) or their magnitude (incomplete factorization by magni-
tude). As a result, preconditioner storage demands are reduced,
while PCG iteration performance is not strongly affected when
incomplete factorization yields a sufficiently strong precondition-
er, therefore gains also in terms of overall required computing time
can be achieved.

All above mentioned specialized versions of the PCG solution
method are applicable to SFE software, for which access to modify
the structural analysis kernel is provided, since the routines for
solving the FE system of equations need to be re-programmed. This
is possible when self-developed or open source structural analysis
code is built into the global SFE software. However, a common ap-
proach followed lately is to employ a powerful and widely used
deterministic (usually commercial) FE program as the structural
analysis kernel of the SFE application. Such deterministic gen-
eral-purpose FE packages are typically available as closed source
software and, with few exceptions (e.g. MSC/NASTRAN DMAP),
users cannot incorporate enhancements to the routines solving
FE equations. Each of these two SFE software development ap-
proaches (with free or prohibited access to modify/replace struc-
tural analysis solution code) has its own features and offers
certain advantages. Thus, it seems that a SFE software developer
or user has typically to choose among the potential for efficiency
of the one approach and the potential for generality of the other.

The remainder of this paper is organized as follows. Section 2
discusses the advantages and disadvantages associated with the
use of closed and open source structural analysis software in SFE
applications. The form of equations arising in linear static SFE
analyses is overviewed in Section 3. Sections 4 and 5 present
PCG-based solution methods and describe corresponding precon-
ditioning techniques for efficiently treating SFE equations. The
storage schemes used for stiffness and preconditioning matrices
by the solution methods are specified in Section 6. Numerical
results demonstrating the computational advantages offered by
iterative solution procedures and incomplete factorization precon-
ditioners are presented in Section 7. The paper concludes with
some final remarks given in section 8.

2. Closed vs. open source structural analysis software in SFE
applications

MC simulation-based SFE analysis can be viewed as a process of
repeated deterministic FE analyses, since it involves structural re-
sponse calculations associated with various instances generated
each time for the uncertain properties considered. Consequently,
the overall quality of SFE software is strongly related to the capa-
bilities of the underlying conventional FE code. Thus, the types of
elements implemented in the FE library, the material models avail-
able, the types of FE analyses supported (linear/nonlinear, static/
dynamic), etc. impose or raise constraints regarding the degree of
sophistication in SFE analyses offered by the software. To ensure
maximum conventional FE capabilities, SFE software can be linked
through appropriate interfaces to well-known and widely used FE
programs (ANSYS, MSC/NASTRAN, etc.). This SFE software develop-

ment approach requires explicit programming of specialized rou-
tines for the handling of stochastic information (mainly for the
determination of stochastic parameters and corresponding data,
the generation of discretized random field samples and the post-
processing of SFE analysis results) and relies on deterministic FE
codes for performing repeated FE analyses based on the generated
samples. The capability to invoke powerful deterministic FE pro-
grams is regarded as a key feature of ‘general-purpose’ SFE soft-
ware [9] and is already incorporated in a number of existing SFE
software packages (e.g. [10,11]).

The coupling of SFE software with powerful deterministic (usu-
ally commercial) FE programs provides remarkable FE capabilities
(associated with current FE programs versions, but also with future
releases), however this implies that (with few exceptions) the ac-
cess to the FE solution code is prohibited, because such FE packages
are usually distributed as closed source software (access is given to
compiled executables only). The aforementioned few exceptions
are the commercial FE packages that already exist, which offer spe-
cialized modules/APIs (Application Programming Interfaces) to
modify/replace prewritten FE code (e.g. MSC/NASTRAN DMAP). It
should also be kept in mind that, in general, the interoperability
of FE programs is expected to improve in the future. Nevertheless,
even when capabilities to modify/replace code of the FE software
kernel are offered, the development, debugging and maintenance
of enhancements through a customized, non-conventional and
complicated programming environment providing limited access
to code is a rather difficult and non-attractive task. Moreover,
enhancements programmed within such FE software can be
exploited only as long as the license to use the software is renewed
and need to be re-programmed, in order to be linked to another FE
software. Therefore, the repeated analyses performed in the frame-
work of SFE applications utilizing commercial FE software are typ-
ically treated as successive stand-alone FE problems, although the
special features of SFE equations allow for the use of more appro-
priate customized solution procedures, as already stated in the
introduction of the present work. The series of FE equations
systems encountered in SFE applications have relatively small dif-
ferences between successive stiffness matrices and form sets of so-
called nearby problems. Such problems can be efficiently treated
using appropriately adapted iterative solution schemes, which
have however to be built into the FE analysis code. Consequently,
the favorable features of nearby problems can be exploited only
when the FE solution code is upgraded by implementing special-
ized and highly efficient SFE solvers. A suitable platform to pro-
gram such an upgrade is a self-developed or open source FE
code, which typically offers substantially less capabilities com-
pared to several commercial closed source FE programs being sys-
tematically developed and improved for decades.

Following the discussion above, it appears that one has to
choose among two SFE software development approaches. The first
approach focuses on the generality and functionality conveyed to
SFE software by the utilization of deterministic FE programs
(ANSYS, MSC/NASTRAN, etc.). In that case, access to the FE solution
code is typically not provided to the user (or if it is provided, it is
usually difficult and non-attractive to program enhancements),
therefore SFE solution efficiency is not improved by employing
customized methods. The second approach essentially sacrifices
generality to some extent, in order to facilitate the programming
of software enhancements that yield SFE analyses results in more
affordable computing times. The applicability of SFE software
developed with this approach is usually restricted by the limited
capabilities of the underlying FE code, however SFE solutions
may be drastically accelerated by implementing efficient iterative
schemes tailored to the special features of SFE equations. The most
appropriate SFE software development approach to follow depends
on a number of factors, like the type of application and its model-

D.C. Charmpis / Computers and Structures 88 (2010) 178–188 179



Download English Version:

https://daneshyari.com/en/article/510296

Download Persian Version:

https://daneshyari.com/article/510296

Daneshyari.com

https://daneshyari.com/en/article/510296
https://daneshyari.com/article/510296
https://daneshyari.com

