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a b s t r a c t

Interval-based uncertainty models have proven to be well-suited for structural safety engineering with
few data at hand. The practical use of interval analysis is hindered by the dependency problem, which
leads to an overestimation of the uncertainty on the results. Affine arithmetic is a generalization of inter-
val arithmetic that accounts for the relation between variables. By circumventing the dependency prob-
lem, it yields more accurate results. This paper presents a novel method to solve affine systems of linear
equations, which allows for the application of affine arithmetic in finite element analysis. The proposed
procedure is illustrated with three applications.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The continuous quest for better designs has stimulated the
development and application of numerical models such as the fi-
nite element method. In order to specify all parameters of a de-
tailed model, a large amount of information is required.
Unfortunately, this information is not always available from the
very beginning of the design process. In order to guarantee that
the design fulfills its requirements under all circumstances, this
uncertainty must be accounted for.

Two types of uncertainty are generally distinguished [13]:
aleatory uncertainty and epistemic uncertainty. Aleatory uncer-
tainty or inherent randomness concerns the uncertainty due to a
natural variability. For instance, different samples from a mass
production facility will not be exactly identical due to manufactur-
ing tolerances, variable environmental conditions, etc. Epistemic
uncertainty, on the other hand, originates from incomplete
information or insufficient understanding of a phenomenon. For
example, a bolted connection may be modeled with a rotational
spring with an uncertain, but not random, stiffness.

Probability theory provides a sound mathematical framework
to model aleatory uncertainty. An overview of stochastic methods
in the context of computational mechanics is given by Schuëller
[23]. Epistemic uncertainty can be treated with probability theory
as well [3], but many researchers prefer to use different models for
both kinds of uncertainty. As such, non-probabilistic uncertainty

models have been developed, of which interval analysis and fuzzy
set theory are the most common.

Interval analysis [16] was originally developed to model the
propagation of roundoff errors through computerized calculations.
Within the context of uncertainty modeling in structural design, it
is used as a tool in anti-optimization [6,20,10,12]. This term ex-
presses that the structure is designed under the assumption that
the uncertain variables attain their most unfavorable values. This
worst case scenario-based philosophy is quite appropriate for
safety engineering, and implicitly present in many standards and
codes.

Fuzzy set theory was introduced in 1965 by Zadeh [24], and has
attracted the interest from scientists in a broad range of research
fields. Initially intended to represent linguistic vagueness, its scope
has been widened to epistemic uncertainty in general, providing a
more intuitive alternative to probability theory. One of the reasons
for its popularity is the wide range of interpretations attributed.
Fuzzy set theory is closely related to possibility theory [25,5], it
can be regarded as a multilevel interval analysis [1], and it can
be used to represent expert knowledge [15]. Since the mathemat-
ical core of fuzzy calculations consists of interval analysis, both
uncertainty models have known a largely parallel development.

This paper shows how interval analysis can be used in the static
analysis of structures by means of the finite element method. In
this context, an important drawback of interval variables is that
throughout calculations, the dependency between different vari-
ables cannot be tracked and accounted for. As a consequence, the
results of an interval analysis tend to be overly conservative. This
is the so-called dependency problem which is discussed in detail
in Section 2. In order to circumvent the dependency problem, af-
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fine arithmetic has been proposed as an enhancement of interval
arithmetic [2]. Affine arithmetic offers a possibility to keep track
of the dependency between variables throughout calculations. Sec-
tion 3 presents a novel algorithm to solve an affine system of linear
equations. Next, the advantages of affine arithmetic are illustrated
with three case studies involving a finite element-based structural
analysis.

2. Interval analysis

2.1. Definitions

In interval analysis, an uncertain variable is represented by a
closed, finite interval. An interval variable ½x� is fully characterized
by its lower bound ½x�� and its upper bound ½x�þ:

½x� ¼ x j ½x�� 6 x 6 ½x�þ
� �

ð1Þ

The information content of an interval variable is quite low: it
represents a range of possible parameter values, without differen-
tiating between these values. Therefore, interval variables are quite
attractive when the amount of available information is limited.
When more data are available, other uncertainty theories like
probability theory or fuzzy set theory, that allow to take more
information into account, become more appropriate.

The generalization of interval variables to interval vectors and
interval matrices is straightforward. For instance, an interval vec-
tor ½x� with independent entries ½x1�; . . . ; ½xn� is defined as:

½x� ¼

x1½ �
..
.

xn½ �

2
664

3
775 ð2Þ

When a continuous mathematical function f ðxÞ is applied to an
interval variable ½x�, the result is the interval ½y� that includes the
output f ðxÞ for every x in the interval ½x�:

½y� ¼ f ð½x�Þ ¼ y ¼ f ðxÞ jx 2 ½x�f g ð3Þ

2.2. Interval arithmetic

The most common way to perform calculations on interval vari-
ables is by interval arithmetic. The core of interval arithmetic con-
sists of a generalization of scalar arithmetic operators to interval
arithmetic operators. For instance, the basic operators addition
(þ), subtraction (�), multiplication (�) and division (=) are general-
ized for the case of interval variables as:

½x� þ ½y� ¼ ½x�� þ ½y��; ½x�þ þ ½y�þ
� �

ð4aÞ

½x� � ½y� ¼ ½x�� � ½y�þ; ½x�þ � ½y��
� �

ð4bÞ

½x� � ½y� ¼ min ½x��½y��; ½x��½y�þ; ½x�þ½y��; ½x�þ½y�þ
� ��

;

max ½x��½y��; ½x��½y�þ; ½x�þ½y��; ½x�þ½y�þ
� ��

ð4cÞ

½x�=½y� ¼ ½x� � 1
½y�þ

;
1
½y��

� �
if 0 R ½y� ð4dÞ

Although some algebraic properties of operations on scalars
hold equally for interval operations (for instance, commutativity
and associativity of addition and multiplication), other properties
only exist in a relaxed form. For example, the property of distribu-
tivity relaxes to a property which is called subdistributivity:

½x� þ ½y�ð Þ � ½z�# ½x� � ½z� þ ½y� � ½z� ð5Þ

Furthermore, even when 0 2 ½x� � ½x� and 1 2 ½x�=½x�, a rigorous
additive ar multiplicative inverse does not exist since ½x� � ½x�–0
and ½x�=½x�–1.

The nonexistence of additive and multiplicative inverses and
the relaxation of distributivity to subdistributivity are due to the
dependency problem, which arises because different occurrences
of a single interval variable in an expression are treated as inde-
pendent variables. Consider for example a function f ðxÞ ¼ 1þx

x and
an interval variable ½x� ¼ 1; 2½ �. The evaluation of f ð½x�Þ according
to Eq. (4) leads to:

y1½ � ¼ f ð½x�Þ ¼ 1þ ½1; 2�
½1; 2� ¼

½2; 3�
½1; 2� ¼ ½1; 3�

When the function f ðxÞ is simplified to 1þ 1=x prior to the eval-
uation of f ð½x�Þ, however, the exact result is found:

y2½ � ¼ f ð½x�Þ ¼ 1þ 1
½1; 2� ¼ 1þ 1

2
; 1

� �
¼ 3

2
; 2

� �
In the first calculation, the interval variable ½x� in the numerator

and the denominator is treated independently. More specifically,
the lower bound y1½ �

� ¼ 1 is obtained when the value of x in the
numerator is equal to the lower bound of the interval ½x�� and, at
the same time, the value of x in the denominator is equal to the
upper bound of the interval ½x�þ. The fact that the same variable ap-
pears twice is ignored, and results in an overestimation of the
interval width of the result. This is avoided by the second evalua-
tion, which is exact because ½x� is encountered only one time.

A mechanical analysis of a structure with the finite element
method generally involves large systems of linear equations. Solving
such systems with traditional methods such as Gauss-elimination or
iterative methods requires numerous operations. Since the overesti-
mation of the uncertainty due to the dependency problem strongly
increases with the number of operations [2], these strategies are not
appropriate for the solution of a linear system of interval equations.

Moreover, the dependency problem is encountered not only
during the solution phase, but also in the assembly of the system
matrices, since different elements may be influenced by the same
interval variable [14]. As a consequence, it is not sufficient to de-
velop an efficient algorithm that delivers sharp bounds on the solu-
tion of an interval system of linear equations, such as Hansen’s
method [8], Rump’s inclusion algorithm [4,22], or the work by
Neumaier [19]. Several authors [7,9,17,26,21,18] therefore propose
strategies to incorporate the dependency between different ele-
ment stiffness matrices. One of these methods is the element-by-
element method of Muhanna et al. [17,18], which has been devel-
oped for the particular case where the element stiffness matrices
depend linearly on an interval elasticity modulus. The global stiff-
ness matrix is assembled by considering the different element stiff-
ness matrices separately – thus circumventing the dependency
problem – and imposes the constraints between elements with a
Lagrange-multiplier based strategy.

2.3. Affine arithmetic

Affine arithmetic was introduced by Comba et al. [2] within the
area of computational geometry as an enhancement of interval
arithmetic. Manson [11] has applied this method to uncertainty
modeling in structural analysis.

The key idea of affine arithmetic is to keep track of and account
for the dependency between interval variables throughout the cal-
culations. Consider a problem with n uncertain input variables
�1½ �,. . ., �n½ �. Without loss of generality, assume that �i½ � ¼ ½�1; 1�,

for i ¼ 1; . . . ;n. Affine arithmetic then represents all variables dur-
ing the analysis as:

hxi ¼ x0 þ x1 �1½ � þ � � � þ xn �n½ � þ xe �e½ � ð6Þ

in which x0 is called the constant term of hxi, which corresponds to
the center value of the interval. The terms xi �i½ � express the linear
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