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h i g h l i g h t s

• We construct a class of self-similar growing networks from a directed graph.
• Our networks have fractality.
• Our networks have scale-free effect.
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a b s t r a c t

In this paper, given an initial directed graph as a self-similar pattern and fix two nodes in
the pattern, we can iterate the graph by replacing any directed edge with the initial graph
of pattern and identifying the fixed nodes of pattern with the endpoints of directed edge.
Using the iteration again and again, we obtain a family of growing self-similar networks.
Modify these networks to be undirected ones, we obtain growing self-similar undirected
networks. We obtain the fractality of our self-similar networks and find out the scale-free
effect in terms of the matrix related to two fixed nodes in the initial graph.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The study of complex networks is a young and active area of scientific research inspired by the study of real-world
networks such as computer networks, brain networks and social networks. Please refer to [1–4] for complex networks.

Self-similarity of fractal introduced by Mandelbrot [5], is one of the most influential results of contemporary
mathematics. How to apply self-similarity and fractality to complex networks? Song et al. [6–8] and Gallos et al. [9] studied
this topic. According to [6–9], a network is (statistically) self-similar if the power exponent of degree distribution is invariant
under renormalization, an l-box is a subset of node set V such that the shortest distance between any two nodes in the
subset is less than l, and fractal dimension dB is given by #V/N(l) ∼ ldB , where N(l) is the smallest number of l-boxes
needed to cover the network. Goh, Slavi, Kim and Kahng also presented some approaches to analyze networks that reveals
the underlying self-similarity [10].

Through the iteration function system (IFS), Hutchinson [11] defined rigorously the self-similar fractal structure, which
is a deterministic self-similarity far from the random self-similarity in real networks as above. It is worth noting that the IFS
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Fig. 1. Model 1: change an edge into a symmetrical graph.

Fig. 2. G1,G2,G3 of growing networks w.r.t. model 1.

is an analogy of symbolic systemΣn = {x1x2 · · · xt · · · : xi ∈ [1, n]∩N}. Then Komjáhy and Simon [12] constructed a family
of growing networks {Gt}t such that Gt has node set Vt = {x1x2 · · · xt : xi ∈ [1, n] ∩ N}, and obtain an interesting result
that for any x ∈ [1, n] ∩ N and a, b ∈ Vt−1, if we denote by di the shortest distance on Gi, then dt(xa, xb) = dt−1(a, b), this
formula is somewhat of self-similarity in Hutchinson’s sense.

Compared to the algebraic approach in [12], in this paperwe return to the geometric and deterministic self-similar networks
by replacing an edge with an initial graph. For example shown in Figs. 1 and 2, given a model changing an edge into a
symmetrical and undirected initial graph G, there exists a family of iterating and growing networks G1(= G),G2,G3, . . .
naturally.

However, when the self-similar pattern G is unsymmetrical, the above growing process is undeterministic. For this, we
will introduce the directed graph model and its growing networks as follows.

Fix a directed graph G = (V , E) and distinct nodes A, B ∈ V such that A, B are not neighbors, we can generate a sequence
{Gt} of growing undirected networks.

We will describe the iterating process by induction. For t = 1, we let G1 = G and G1 the modified undirected graph of
G1. We always assume that G1 is connected. Assume that Gt = (Vt , Et) with A, B ∈ Vt ∩ V , which implies that we always
preserve the nodes A and Bwith their notation during the inductive process. We can also think A and B as the starting node
and ending node of Vt formally, i.e., there is a formal (but not real) direction from A to B in Gt .

For time (t + 1), we obtain #E copies {Gt × e}e∈E of Gt .
Step 1. Replacement: Focusing on the initial graph G, for every edge e in G, we replace e by one copy Gt × e with node set
Vt × e. In fact, we delete all edges in G and keep all nodes of G in this step.
Step 2. Identification: Identify (A, e)(∈ Vt × e) with the starting node of e, and identify (B, e)(∈ Vt × e) with the ending
node of e, where the identification is denoted by ≃ .

Then as in Fig. 3, we obtain a new directed network Gt+1 by replacing each edge of G by one copy of Gt and identifying the
starting (or ending) nodes of the edge and the corresponding copy of Vt , that means the direction of the copy of Vt coincides
with that of the edge. Keep the nodes A, B together with their notation for time (t + 1).
Step 3. Modification:Modifying these directed networks to be undirected ones, we obtain self-similar networks {Gt}.

We will provide an example to illustrate our recursive construction in Fig. 4.

Example 1. Suppose the initial direct graph G = G1 consists of six nodes and six edges, where A is the starting node and B
is the ending node, although there is no directed path from A to B. In Step 1 we color the starting node red and the ending
node green, and ignore the nodes of G. In step 3 we give a undirected graph G2.

Now our growing self-similar networks {Gt}t are constructed, and thus we will investigate the fractality and power law
of cumulative degree distribution.

We introduce thenotation before the statements of ourmain results. For the initial self-similar patternG, let d(≥2)denote
the shortest distance between A and B in G1, andm = #E the cardinality of directed edges in G. Write γ = maxz∈G degG(z).
Denote by xout (outdegree) and xin (indegree) the number of edges starting and ending at x respectively. Then

M =


Aout Ain
Bout Bin


is a non-negative matrix where deg(A), deg(B) ≥ 1 where deg(x) = xout + xin. Suppose λ ≥ 1 is the maximal (Perron–
Frobenius) eigenvalue ofM .

Theorem 1. The self-similar networks {Gt}t satisfy the fractality, i.e.,

#Vt

Nt(l)
∼ l

logm
log d ,

where Nt(l) is the smallest number of l-boxes needed to cover Vt .
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