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h i g h l i g h t s

• Entropy driven equilibrium distributions are found by counting of states.
• We show the exclusiveness of the Polya, Bernoulli, Negative Binomial and Poisson distributions.
• A general master equation framework is given for the evolution of network connectivity and particle production.
• For dynamics satisfying detailed balance we prove the decrease of the generalized entropic distance.
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a b s t r a c t

For entropy driven balanced processes we obtain final states with Poisson, Bernoulli,
negative binomial and Pólya distributions. We apply this both for complex networks
and particle production. For random networks we follow the evolution of the degree
distribution, Pn, in a systemwhere a node can activate k fixed connections from K possible
partnerships among all nodes. The total number of connections,N , is also fixed. For particle
physics problems Pn is the probability of having n particles (or other quanta) distributed
among k states (phase space cells) while altogether a fixed number of N particles reside on
K states.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Stationary distributions, as results of entropydrivenprocesses are dominatedbyphase space factors in contrast to ‘‘energy
driven’’ processes, where the final state is more determined by the interaction (potential) energy than the kinetic degrees
of freedom. Entropy driven processes are typical at high temperatures, where the entropic contribution to the free energy is
increasingly important. Having inmind a statistical–thermodynamic approach to the hadronization problem in high-energy
physics, models emphasizing the phase space factor are useful, while approaches based on interaction matrix elements
are more purposeful for describing branching ratios in unidirectional decay chain processes. In this paper we deal with a
model framework considering entropy driven processes and their limiting distributions typical for high-temperature, near-
equilibrium situations. The competing view of far-equilibrium, unbalanced processes is postponed to a later publication [1].

Balanced processes on the other hand include all evolutions where a transition and its reverse between the states of a
system are both allowed, albeit sometimes with different rates, if in the microscopic processes a preference is built in.

The general laws of equilibrium and near-equilibrium thermodynamics are classical knowledge. The existence of macro-
equilibrium based on micro-dynamics and its stability properties are closely connected with the physical notions of
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temperature, heat and entropy. There are, however, still some open problems left to modern statistical physics. General-
izations of the entropy –probability connection [2–8], beyond mathematical games, also require the re-interpretation of the
notion of equilibrium [9] and the composition rules for uniting smaller systems in bigger and more complex ones [10,11].
Also questions, related to far from equilibrium behavior of large dynamical systems, like growing networks [12–18], are
intriguing.

Here we consider a unified approach to all statistics resulting from a balanced micro-dynamics applicable to a wide class
of physical models. In particular we discuss the case of randomly connected networks and randomly produced particles with
some imposed conservation laws.

For processes near equilibrium typically a subsystem and a reservoir exchange physical currents in a locally symmetric
and microscopically reversible way, establishing in due of time a detailed balance. This state is characterized then by
the distribution of those conserved quantities. Our first example is the hadronization process: In high-energy accelerator
experiments the number of created particles per event fluctuates. Since the total energy is fixed in such experiments, the
distribution of hadron numbers from one collision event to another determines the effective thermal-like properties of the
observed kinetic spectra, [8,19].

Another example is given by random networks, where due to a balance between growth and decays of the connections
the degree distribution tends to a few particular shapes in equilibrium. Such studies have become popular in the last decades
[20–25]. Random networks are characterized by the probability distribution, Pn, of having a given number of links, n, known
as the degree distribution. The connection between the indexed nodes, i = 0, 1, . . . , k, can be described by an adjacency
matrix, Cij containing zero for no connection and a number for a link pointing from node i to node j. In unweighted networks
the entries of Cij are just zeros and ones, and for undirected networks only the upper triangle of the matrix is used. For more
general considerations, however, e.g. on directed networks this matrix is not necessarily symmetric, Cji ̸= Cij. Weighted
connections also may be of relevance for some statistical problems, in such cases Cij can be any real number. Even self-
connections, Cii ̸= 0 have to be allowed for the most general network.

In this view a random network is a random ensemble of Cij values. It looks analogous to a rectangular box with altogether
K = k× k cells, onto which N (multiple, including self-) connections are randomly thrown. By an analysis, in particular by
asking for the probability of a given multiplicity connection from a single node, one chooses to sum over k cells in a row (or
in a column) and asks for the Pn probability for finding exactly n connections. This is similar thus with the case of particle
physics problems, where Pn is the probability of having n particles (or other quanta) distributed among k states (phase space
cells) while altogether a fixed number of N particles reside on K states.

In a general picture applicable both for particle and link distributions under some conservation constraints, we assume K
cells, N = pK ‘‘stones’’ (i.e. units of connection strength). If only 0 or 1 stone can be in a cell then p < 1 (fermionic systems),
for an arbitrary number ofmultiple connections p > 1 is also possible (bosonic systems). The stationary ‘‘degree distribution’’
of the nodes is given by the probability that a single row (with k boxes) contains exactly n stones Qn = Prob(n, k;N = pK ,

K = k2).
We present analytic solutions to the above problems in the frameworks of (i) a pure statistical counting and (ii) in a

master equation approach.

2. Statistics of random displacements

For a totally random displacement of N particles in K cells and asking for observing n ones in k cells one obtains the
distribution following the idea suggested by Boltzmann: the probability of such an observation is given by the ratio of
the numbers of arrangements with and without splitting the system to k and K − k cells, respectively. The number of
combinations of n particles in k cells, if each cell can be occupied at most by one particle (the fermionic case), is given by:

W (k, n) =
k!

n! (k− n)!
=

(
k
n

)
. (1)

In particle physics fermions behave thisway and for networks this result corresponds to unweighted directed links. Networks
constrained by N ≤ K and n ≤ k are fermionic. If on the other hand N > K and correspondingly n > k is allowed, then there
must be multiple connections. Such systems we label as bosonic ones.

The probability of having exactly n particles (connections) in k cells (frommaximal k connections) while in a huge system
altogether N particles (connections) are randomly distributed in K cells (among the maximal number of partner nodes)
allowing only single occupation (single connections) is given by the following Pólya distribution:

Qn =
W (k, n)W (K − k,N − n)
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This distribution is normalized,
∑
∞

n=0Qn = 1. For accessing different limits of the Pólya distribution, we utilize the generic
approximation

W (K ,N) −−→
K≫N
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, (3)



Download English Version:

https://daneshyari.com/en/article/5103113

Download Persian Version:

https://daneshyari.com/article/5103113

Daneshyari.com

https://daneshyari.com/en/article/5103113
https://daneshyari.com/article/5103113
https://daneshyari.com

