
Constrained structural design optimization via a parallel augmented Lagrangian
particle swarm optimization approach

P.W. Jansen, R.E. Perez ⇑
Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4

a r t i c l e i n f o

Article history:
Received 30 June 2010
Accepted 22 March 2011
Available online 20 April 2011

Keywords:
Structural optimization
Truss structures
Particle swarms
Constrained optimization
Augmented Lagrangian
Parallel computing

a b s t r a c t

This paper presents an extension to the basic particle swarm optimization approach for the solution of
constrained engineering design optimization problems. The approach takes advantage of the PSO ability
to find global optimum in problems with complex design spaces while directly enforcing feasibility of
constraints using an augmented Lagrange multiplier method. Details in the algorithm implementation
and properties are presented and the effectiveness of the approach is illustrated in different benchmark
structural optimization test cases. Results show the ability of the proposed methodology to find better
solutions for structural optimization tasks as compared to other optimization algorithms.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In many practical applications, structural engineers are con-
fronted with design problems that have multi-modal, non-convex,
non-differentiable, and/or non-continuous design spaces and that
are driven by a large number of non-linear equality and inequality
constraints. It is desirable to have a flexible optimization approach
which is able to traverse complex design spaces towards the global
optimum while enforcing constraint feasibility.

Very efficient algorithms for the solution of constrained optimi-
zation problems currently exist such as the Sequential Uncon-
strained Minimization Techniques [1], the method of feasible
directions [2,3], the method of Moving Asymptotes [4], and
sequential quadratic programming [5]. Such algorithms exploit
specific design problem properties such as differentiability and
convexity which limit their application in the solution of structural
design problems. Similarly, effective optimization approaches such
as simulated annealing [6], genetic algorithms [7], particle swarms
[8], ant colony optimization [9], bacterial foraging [10], imperialist
competitive algorithm [11], charged system search [12], and cuck-
oo search algorithm [13] have been developed to traverse difficult
design spaces towards the global optimum. All of these global
optimization approaches, however, have been developed as uncon-
strained optimizers limiting their applicability to solve constrained
structural design problems.

Among the different global optimizers, particle swarm optimi-
zation (PSO) has demonstrated its usefulness as an optimizer capa-
ble of finding global optimum in a variety of design applications in
both structural design [14–16] and other fields of knowledge [17–
25].

Different methods have been proposed to handle constraint
optimization problems with the PSO algorithm. Constraint han-
dling methods include violated design points redirection [26], the
use of penalty methods [14] and adaptive penalty methods [27],
extending the objective function with Lagrange multipliers [28],
and problem reformulation into an unconstrained multi-objective
formulation [29,30] or a series of sequential quadratic program-
ming problems [31]. Many of these methods do not enforce con-
straint feasibility, limiting its possible use to practical applications.

In this paper, we present a parallel particle swarm optimization
algorithm which uses a dynamic augmented Lagrangian multiplier
method to enforce constraints. Specifically we build upon the work
done by Sedlaczek and Eberhard [28] in extending the PSO to han-
dle constraints with an augmented Lagrangian multiplier ap-
proach. We introduce the ability to parallelize function
evaluations and analyze the effect that the number of inner itera-
tions in an augmented Lagrangian multiplier implementation has
on the quality of the solutions when used with the PSO. Further-
more, we propose the use of a dynamic inner iteration scheme
which is demonstrated to reduce the computational cost while
maintaining the accuracy and feasibility of results.

The development of this paper is as follows: in Section 2, we re-
view the general PSO formulation and algorithm development, and
discuss some convergence properties and improvements. Current

0045-7949/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruc.2011.03.011

⇑ Corresponding author.
E-mail addresses: Peter.Jansen@rmc.ca (P.W. Jansen), Ruben.Perez@rmc.ca (R.E.

Perez).

Computers and Structures 89 (2011) 1352–1366

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

http://dx.doi.org/10.1016/j.compstruc.2011.03.011
mailto:Peter.Jansen@rmc.ca
mailto:Ruben.Perez@rmc.ca
http://dx.doi.org/10.1016/j.compstruc.2011.03.011
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


methods used to enforce constraints for the PSO are described in
Section 3. In Section 4, we present details in the formulation, algo-
rithmic implementation, and properties of a parallel PSO approach
formulation which enforces constraints using an augmented La-
grange multiplier method. Section 5 presents different convex
and non-convex constrained structural optimization case studies.
The test cases are used to demonstrate the proposed algorithm
behavior to its setting parameters, and compare the effectiveness
of different algorithmic implementation options in finding optimal
and feasible structural optimization solutions. Concluding remarks
are presented in Section 6.

2. Particle swarm algorithm

Particle swarm optimization is a population-based and deriva-
tive-free global optimization method based on the adaptation pro-
cess observed in flocking organisms, such as birds, bees, fish, when
searching for regions with food availability with the ability to re-
turn to promising regions that have previously been discovered
[8]. The adaptation process in the swarm process is stochastic in
nature and depends on the local memory of each individual (parti-
cle) and the global memory of the population. Each particle move-
ment in the design space is modelled using position and velocity
information. Numerically, the position xi

kþ1 and velocity v i
kþ1 of a

particle i at iteration k + 1 is updated as:

xi
kþ1 ¼ xi

k þ v i
kþ1Dt;

v i
kþ1 ¼ wv i

k þ c1r1 pi
k � xi

k

� �
þ c2r2 pg

k � xi
k

� �
;

ð1Þ

where xi
k and v i

k are respectively the position and velocity vector of
the particles at iteration k, Dt is the time step value (considered
unity in the present work), while r1 and r2 represent random num-
bers between 0 and 1, pi

k represents the best particle position par-
ticle i has achieved so far, and pg

k corresponds to the global best
position found in the swarm up to iteration k so far [32]. The
remaining three terms are setting parameters which affects the
convergence behavior of the PSO algorithm [33–36]. The c1 and c2

are confidence parameters biasing a particle movement towards
its own best solution or towards the global best solution found by
the swarm, while w represents an inertia weight modifying the par-
ticle global/local search behaviour. Detailed illustration of the posi-
tion and velocity update scheme can be found in [36], which also
contains detailed analysis of the impact of the different setting
parameters and derivation of a set of necessary and sufficient con-
ditions that ensure stable behavior of the algorithm and guarantee
convergence which is given by:

0 < c1 þ c2 < 4;
ðc1 þ c2Þ

2
� 1 < w < 1: ð2Þ

Based on the particle and velocity updates as explained above,
the steps of the algorithm can be outlined as follows:

1. Create an initial set of particle positions xi
o and velocities v i

o ran-
domly distributed throughout the design space bounded by
specified limits on each design variable and maximum
velocities.

2. Evaluate the objective function values f xi
k

� �
of each particle

based on its position xi
k in the design space.

3. Update the optimum particle position pi
k at current iteration (k),

if applicable, and global optimum particle position pg
k .

4. Update the position of each particle using its previous position
and updated velocity vector as specified in Eq. (1).

5. Repeat steps 2–4 until the specified convergence criteria is
met.

One aspect that can affect the efficiency of the PSO, to some de-
gree, is the initial particle distribution of the swarm over the design
space. Areas not initially covered may not get explored by the
swarm, depending on the parameters used and the global and indi-
vidual best solutions found at each iteration. Different approaches
to initialize the particle positions have been investigated [16]. The
simple approach of randomly distributing the initial positions and
velocity vectors of each particle throughout the bounded design
space has been proven successful in practice [14–16]. To achieve
this, one can use Eqs. (3) and (4)

xi
0 ¼ xmin þ r xmax � xminð Þ; ð3Þ

v i
0 ¼ xmin þ r xmax � xminð Þ: ð4Þ

The term r in both equations represents a random number between
0 and 1, while xmin and xmax represent the lower and upper bounds
of the design variables, respectively. It should be noted that the PSO
algorithm requires each design variable to have a lower and upper
bound. The maximum velocity for each design variable is given by
the maximum range of the particles (xmax � xmin) throughout the
present work. The maximum velocity can be reduced to achieve a
more local search behavior similar to small values in inertial
weight. The current implementation of the algorithm allows for
the specification of one or up to all of the initial positions of the
swarm, if for example some prior knowledge is available about
the design space, with the remaining particles being assigned
randomly.

The basic algorithm described above has an unwanted property
when xi = pi = pg for any particle i. In this case, the velocity update
(1) reduces to wvi, so that when a particles position coincides with
its best and the global best position, it will only move from this
point if its velocity and w are non-zero. In the case where velocity
is close to zero, all particles will stop moving when they catch up
with the global best particle and the algorithm will converge pre-
maturely. This position does not need to coincide with the global
optimum and does not even have to be a local minima; this case
merely indicates that all particles have converged on the best solu-
tion found so far. To address this problem van den Bergh [35] intro-
duced a modification to the basic algorithm where the velocity and
position update of the global best particle s is changed to:

vs
kþ1 ¼ �xs

k þ pg
k þwvs

k þ qkð1� 2r2Þ; ð5Þ
xs

kþ1 ¼ pg
k þwvs

k þ qkð1� 2r2Þ; ð6Þ

where r2 is again a random number in the interval between 0 and 1.
The term �xs

k ‘‘resets’’ the particle position to the global best posi-
tion and wvs

k pushes the particle in the direction of the current
search direction. To this, a random direction term is added from a
sample space with side lengths 2qk [35]. The addition of the param-
eter q causes the PSO algorithm to perform a random search in the
vicinity of the best solution found so far by the swarm. The size of
the area searched around the global best position is controlled by q,
which gets updated according to:

qkþ1 ¼
2qk if nsuccesses > sc;

0:5qk if nfailures > fc;

2qk otherwise;

8><
>: ð7Þ

where nsuccesses and nfailures denote the number of consecutive suc-
cesses or failures, with a failure being defined as no change in the
global best position, f pg

k

� �
¼ f pg

k�1

� �
, and sc and fc being threshold

parameters. To ensure that Eq. (7) is well-defined, the number of
successes or failures must be reset to zero when a failure or success
occurs, respectively [35]. This adaptation scheme for the parameter
q ensures that if it results in consecutive failures, then the search
space is too large and is reduced. The same applies when the cur-
rent value results in consecutive successes, which indicates the

P.W. Jansen, R.E. Perez / Computers and Structures 89 (2011) 1352–1366 1353



Download English Version:

https://daneshyari.com/en/article/510313

Download Persian Version:

https://daneshyari.com/article/510313

Daneshyari.com

https://daneshyari.com/en/article/510313
https://daneshyari.com/article/510313
https://daneshyari.com

