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a b s t r a c t

We study a collection of polar self-propelled particles confined to a long two-dimensional
channel. We write the coupled hydrodynamic equations of motion for density and polari-
sation order parameter. At two confined boundaries, density is fixed to the mean and ori-
entation is anti-parallel with fixed magnitude of polarisation. Such boundary conditions
make our system similar to a sheared suspension of self-propelled particles, which has
many practical applications. Antiparallel alignment at the two confined boundaries and
alignment inside the channel create rolls of orientation along the long axis of the channel.
For zero self-propulsion speed, density and orientation fields are decoupled and density
remains homogeneous inside the channel. For finite self-propelled speed, density inhomo-
geneities develop and these rolls move along the long axis of the channel. Density inho-
mogeneity increases sharply with increasing the self propulsion speed and then reaches a
maximum and again decreases for very large speeds. Formation of rolls is very similar to
the classic problem of Rayleigh–Benard convection in fluid dynamics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Collective behaviour of active particles are extensively studied in [1–4]. Large collections of living organisms are known
to exhibit highly coherent collective motion [5–9]. This behaviour, often referred to as ‘‘flocking’’ spans an enormous
range of length scales and is seen in diverse systems [10–20]. These systems are rigorously studied in bulk either (i) using
hydrodynamic equations of motion for slow variables (ii) or microscopic rule based models viz.: Vicsek’s model [5]. But
most biological systems are confined to thin geometry [21]. Confinement and boundary plays an important role in variety
of problems in biology [21], sheared systems [22] and other places like in fluid dynamics. One classic example include
Rayleigh–Benard (RB) convection in fluid [23]. In these confined systems, the effect of boundaries are very important.

Boundary can play very important role in a collection of self-propelled particles. It can inducemany interesting phenom-
ena like, in many cases, boundary can induce spontaneous flow inside the channel [24]. We write the phenomenological
equations of motion for local density and polarisation order parameter for the collection of polar self-propelled particles
Eqs. (1) and (2). Self-propelled speed (SPS) of the particle introduces a non-equilibrium coupling between density and po-
larisation. For zero SPS both density and polarisation are decoupled. We solve these equations in the confined geometry
shown in Fig. 2. At the two boundaries of the channel orientation of rods are antiparallel, which produces a gradient along
the confinement direction. Diffusion tries to make them parallel. Hence the competition between above two create rolls of
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Fig. 1. (Left) Vector plot of local polarisation and (right) density inside the channel for activity RA = 0.67. Different plots are snapshot of polarisation and
density at different times. (Left) local polarisation shows vortex type periodic pattern (rolls) along the long axis of the channel. Different colour dots on
periodic rolls represent distinct vortex. Density also shows periodic pattern. Bright regions are high density and dark regions are low density. Top to bottom
figures are from small to large time. With time periodic rolls for both density and local polarisation moves from one end to other end of the channel. Arrow
on the top of the figure represent direction of motion of periodic pattern. This direction is spontaneously chosen from two equally possible direction in the
system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Geometry of confined channel and orientation of particle at the two confined boundaries. x-direction is chosen along the long axis of the channel
and z-direction is the confinement direction. Periodic boundary condition is used along the long axis of the channel. Orientation is parallel to +x-direction
at bottom boundary (z = 1) and parallel to −x-direction at top boundary (z = d). Magnitude of polarisation |P| = 1 is fixed at two boundaries and density
is maintained to value ρ0 = 0.1.

orientation along the long-axis of the channel. For zero SPS these rolls are static and density inside the channel is homoge-
neous. For non-zero SPS both density and polarisation are coupled and such coupling produces moving rolls.

In Fig. 1, we show the (left) vector plot of orientation and (right) density of particles inside the channel for SPS v0 = 1.5
or activity RA = 0.67’ at different times. We find inhomogeneous moving pattern of orientation and density along the long
axis of the channel Fig. 1 (top to bottom). Arrow indicate the direction of motion.

In rest of the article, Section 2 discusses the model in detail. Here we also write the hydrodynamic equations of motion
for density and polarisation. Section 3 discusses the numerical details for solving these equations. We discuss our results in
Section 4 and finally conclude with discussion and future aspect of this study in Section 5.

2. Model

We consider a collection of self-propelled particles of length l confined to a two-dimensional channel whose thickness
d is very small compare to its long axis L. We fix the length of the channel L and vary the width of the channel d ≪ L.
Orientation at the lower boundary is parallel to horizontal axis and at the upper boundary it is antiparallel and magnitude
of polarisation fixed at two boundaries. We also maintain mean density at two confined boundaries to avoid accumulation
of particles at boundaries. Periodic boundary condition is used for both density and polarisation along the long axis of the
channel. Geometry of confined channel and orientation of particles at the two boundaries is shown in Fig. 2.

2.1. Hydrodynamic equations of motion

Dynamics of the system is described by the equations of motion for hydrodynamic variables for the collection of polar
self-propelled particles. We write the phenomenological coupled hydrodynamic equations of motion for density ρ, because
total number of particles are conserved and polarisation P , which is an orientation order parameter, is a broken symmetry
variable in the ordered state. We write the minimum order terms allowed by symmetry. Two equations are

∂ρ

∂t
= −v0∇ · (ρP) + Dρ∇

2ρ (1)
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