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a b s t r a c t

In this work, we compare different mesh moving techniques for monolithically-coupled fluid-structure
interactions in arbitrary Lagrangian–Eulerian coordinates. The mesh movement is realized by solving
an additional partial differential equation of harmonic, linear-elastic, or biharmonic type. We examine
an implementation of time discretization that is designed with finite differences. Spatial discretization
is based on a Galerkin finite element method. To solve the resulting discrete nonlinear systems, a Newton
method with exact Jacobian matrix is used. Our results show that the biharmonic model produces the
smoothest meshes but has increased computational cost compared to the other two approaches.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid-structure interactions are of great importance in many
real-life applications, such as industrial processes, aero-elasticity,
and bio-mechanics. More specifically, fluid-structure interactions
are important to measuring the flow around elastic structures, the
flutter analysis of airplanes [1], blood flow in the cardiovascular
system, and the dynamics of heart valves (hemodynamics) [2,3].

Typically, fluid and structure are given in different coordinate
systems making a common solution approach challenging. Fluid
flows are given in Eulerian coordinates whereas the structure is
treated in a Lagrangian framework. We use a monolithic approach
(Fig. 1), where all equations are solved simultaneously. Here, the
interface conditions, the continuity of velocity and the normal
stresses, are automatically achieved. The coupling leads to addi-
tional nonlinear behavior of the overall system.

Using a monolithic formulation is motivated by upcoming
investigations of gradient based optimization methods [4], and
for rigorous goal oriented error estimation and mesh adaptation
[5], where a coupled monolithic variational formulation is an inev-
itable prerequisite.

For fluid-structure interaction based on the ‘arbitrary
Lagrangian–Eulerian’ framework (ALE), the choice of appropriate
fluid mesh movement is important. In general, an additional
elasticity equation is solved. For moderate deformations, one can
pose an auxiliary Laplace problem that is known as harmonic mesh
motion [6,7]. More advanced equations from linear elasticity are
also available [8,9]. For a partitioned fluid-structure interaction
scheme, a comparison was made between different models [10].

The pseudo-material parameters in both approaches were used
to control the mesh deformation. If the parameters do not depend
on mesh position and geometrical information, both approaches
can only deal with moderate fluid mesh deformations. This prob-
lem is resolved by using mesh-position dependent material param-
eters that are used to increase the stiffness of cells near the
interface [8]. There are several techniques for choosing these
parameters to retain an optimal mesh, such as a Jacobian-based
stiffening power [11] that is eventually governed by appropriate
re-meshing techniques. We use an ad hoc approach for these
parameters, measuring the distance to the elastic structure and
adapting the parameters to prevent mesh cell distortion as long
as possible.

Here, we also use (for mesh moving) the biharmonic equation
that others have studied for fluid flows in ALE coordinates [12]. It
was also shown there, that using the biharmonic model provides
greater freedom in the choice of boundary and interface conditions.
In general, the biharmonic mesh motion model leads to a smoother
mesh (and larger deformations of the structure) compared to the
mesh motion models based on second order partial differential
equations. Larger deformations and structure touching the wall
are only possible with a fully Eulerian approach [6,7,13] or in the
ALE framework with a full or partial re-meshing of the mesh, i.e.,
generating a new set of mesh cells and sometimes also a new set
of nodes.

Although, the mesh behavior of the harmonic and the bihar-
monic mesh motion models were analyzed in [12] for different
applications, we upgrade these concepts to fluid-structure interac-
tion problems. Moreover, we provide quantitative comparisons of
the three mesh motion models.

In the discretization section, we address aspects of the imple-
mentation of a temporal discretization, that is based on finite
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differences. In particular, we present the one step-h schemes [14]
and the Fractional step-h scheme [15] in ALE fashion for the
monolithic problem. Space discretization is done using a standard
Galerkin finite element approach. The solution of the discretized
system can be achieved with a Newton method, which is very
attractive because it provides robust and rapid convergence. The
Jacobian matrix is derived by exact linearization which is demon-
strated by an example. Because the development of iterative linear
solvers is difficult for fully coupled problems (however, sugges-
tions have been made [16,17]), and we are only interested in solv-
ing problems for a low amount of unknowns, we use a direct solver
to solve the linear systems.

The outline of this paper is as follows. In the second section, the
fluid equations in artificial coordinates, and structure equations for
two different material models, are introduced. After, the mixed for-
mulation of the biharmonic equation is introduced for two kinds of
boundary conditions. Finally, fluid-structure interaction based on a
closed variational setting is proposed. Section 3 presents discreti-
zation in time and space of the fluid-structure interaction prob-
lems. Moreover, the nonlinear problem is examined through an
exact computation of the Jacobian matrix. The computation of
the directional derivatives is shown. In Section 4, numerical tests
for four problems (in both two and three dimensions) are per-
formed, showing the advantages and the differences between the
three mesh motion models. The computations are performed using
the finite element software package deal.II [18].

2. Equations

In this section, we briefly introduce the basic notation and the
equations describing both the fluid (in the ALE-transformed coor-
dinate system) and structure (in its natural Lagrangian coordi-
nates). Then, we present the monolithic setting for the coupled
problem.

2.1. Notation

We denote by X � Rd, d = 2, 3, the domain of the fluid-structure
interaction problem. This domain is supposed to be time indepen-
dent but consists of two time dependent subdomains Xf(t) and
Xs(t). The interface between both domain is denoted by Ci(t) =
oXf(t) \ oXs(t). The initial (or later reference) domains are denoted
by bXf and bXs, respectively, with the interface bCi. Further, we de-
note the outer boundary with @ bX ¼ bC ¼ bCD [ bCN where bCDandbCNdenote Dirichlet and Neumann boundaries, respectively. We
adopt standard notation for the usual Lebesgue and Soboley spaces
and their extensions by means of the Bochner integral for time
dependent problems [19]. We use the notation (�, �)X for a scalar
product on a Hilbert space X and h�, �i@X for the scalar product on
the boundary oX. For the time dependent functions on a time inter-
val I, the Sobolev spaces are defined by X :¼ L2ðI; XÞ. Concretely,
we use L :¼ L2ðI; L2ðXÞÞ and V :¼ H1ðI; H1ðXÞÞ ¼ fv 2 L2

ðI; H1ðXÞÞ : @tv 2 L2ðI; H1ðXÞÞg.

2.2. Fluid in artificial coordinates

Let bAf ðx̂; tÞ : X̂f � It ! Xf ðtÞ be a piecewise continuously differ-
entiable invertible mapping. We define the physical unknowns v̂ f

and p̂f in bXf by

v̂ f ðx̂; tÞ ¼ v f ðx; tÞ ¼ v f ðbAf ðx̂; tÞ; tÞ;
p̂f ðx̂; tÞ ¼ pf ðx; tÞ ¼ pf ð bAf ðx̂; tÞ; tÞ:

Then, with

bF f :¼ r̂bAf ; bJ f :¼ det bF f ;

we get the relations [20]:

rv f ¼ r̂v̂ f
bF�1

f ; @tv f ¼ @tv̂ f � ðbF�1
f @t

bAf � r̂Þv̂ f ;Z
Xf

f ðxÞdx ¼
Z
bX f

f̂ ðx̂ÞbJdx̂:

With help of these relations, we can formulate the Navier–Stokes
equations in artificial coordinates:

Problem 2.1. (Variational fluid problem, ALE framework) Find
fv̂ f ; p̂f g 2 fv̂D

f þ bVg � bLf , such that v̂ f ð0Þ ¼ v̂0
f , for almost all time

steps t, and

ðbJ f q̂f ð@tv̂ f þ ðbF�1
f ðv̂ f � @t

bAf Þ � r̂Þv̂ f Þ; ŵvÞbX f

þ ðbJ f r̂f
bF�T

f ; r̂ŵvÞbX f

� hĝf ; ŵ
vibC i[bCN

¼ 0 8ŵv 2 bV f ;

ðddivðbJ f
bF�1

f v̂ f Þ; ŵpÞbX f

¼ 0 8ŵp 2 bLf ;

with the transformed Cauchy stress tensor

r̂f :¼ �p̂f I þ q̂f mf ðr̂v̂ f
bF�1 þ bF�Tr̂v̂T

f Þ:

The viscosity and the density of the fluid are denoted by mf and q̂f ,
respectively. The function ĝf represents Neumann boundary condi-
tions for both physical boundaries (e.g., stress zero at outflow
boundary), and normal stresses on bCi. Later, this boundary repre-
sents the interface between the fluid and structure. We note that
the specific choice of the transformation bAf is up to now arbitrary
and left open.

2.3. Structure in Lagrangian coordinates

Usually, structural problems are formulated in Lagrangian coor-
dinates, which means to find a mapping from the physical domain
Xs(t) to the reference domain bXs. The transformation bAsðtÞ :bXs � It ! XsðtÞ is naturally given by the deformation itself:bAsðx̂; tÞ ¼ x̂þ ûsðx̂; tÞ; bF s :¼ r̂ bAs ¼ I þ r̂ûs; bJs :¼ detðbF sÞ:

ð1Þ

Fig. 1. The monolithic solution approach for fluid-structure interaction.
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