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h i g h l i g h t s

• We have studied the dynamics of a non-ideal Duffing oscillator.
• We identified new features on Duffing oscillator parameter space.
• Our results show organized distribution of periodic windows.
• We observed intertwined basins of attraction for coexisting multiple attractors.
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a b s t r a c t

We investigate thedynamical behavior of a non-idealDuffing oscillator, a systemcomposed
of a mass–spring–pendulum driven by a DC motor with limited power supply. To identify
new features on Duffing oscillator parameter space due to the limited power supply,
we provide an extensive numerical characterization in the bi-parameter space by using
Lyapunov exponents. Following this procedure, we identify remarkable new organized
distribution of periodic windows, the ones known as Arnold tongues and also shrimp-
shaped structures. In addition, we also identify intertwined basins of attraction for
coexisting multiple attractors connected with tongues.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

Q3

In recent years, there has been an increasing amount of work on nonlinear dynamics characterizing the possible 2

structures in two-dimensional control parameter (bi-parameter) space [1]. Accordingly, periodic windows with important 3

features, mainly shrimp-shaped structures [2] and Arnold tongues [3–5], have been identified in several systems such as 4

two-gene model [6], impact oscillator [7,8], dissipative model of relativistic particles [9], tumor growth model [10], Chua’s 5

circuit [11–13], prey–predator model [14], and Red Grouse population model [15]. 6

In the nonlinear dynamics context, oscillators with mechanical coupling have recently attracted a significant attention 7

due to the complexity of the dynamics for high degree-of-freedom devices and possible applications to advanced technolo- 8

gies [16–20]. Among the class of mechanical coupling oscillators, an interesting example is the mass–spring–pendulum 9
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system [21,22]. Svoboda and collaborators studied a system of masses with a pendulum, where the pendulum is attached to1

one mass of a chain of masses connected by springs [23]. They showed that autoparametric resonance can arise. In Ref. [24]2

was investigated the influence of nonlinear spring on the autoparametric system. It was verified the existence of rich dy-3

namics such as chaotic oscillations.4

In this work, we investigate the parameter space organization of a non-ideal Duffing oscillator, namely, the5

mass–spring–pendulum system. Duffing oscillator is a forced oscillator with a nonlinear elasticity, and it is described by6

a nonlinear differential equation of second-order that has been used in a variety of physical processes. This oscillator is well7

known in engineering science, and it has been used to model the dynamics of types of electrical and mechanical systems.8

Almong and collaborators experimentally studied signal amplification in a nanomechanical Duffing resonator via stochastic9

resonance [25]. The Duffing oscillator is also a useful model to study the dynamics behavior of structural systems, such as10

columns, gyroscopes, and bridges [26].11

The non-ideal character of the studied oscillator is a consequence of the fact that the source of energy is given by a12

DC motor with limited power supply [27,28]. Previous studies of this system have shown a rich dynamical behavior with13

several nonlinear phenomena, like quasi-periodic attractors, chaotic regimes, crises, coexistence of attractors, and fractal14

basin boundaries [29–31]. Here, our main purpose is to provide a global parameter analysis of the behavior of this oscillator15

with amechanical coupling. Themain features found in the parameter spacewere the self-similar structures, such as shrimps16

and Arnold tongues. Comparing with results from parameter spaces of ideal oscillators, these Arnold tongue attributes are17

a consequence of the non-ideal character of this oscillator.18

This paper is organized as follows. In Section 2, we present the mathematical description of the non-ideal Duffing19

oscillator. In Section 3, we provide characterization of the periodic windows identified in the bi-parameter space. In20

Section 4, we also provide an example of a possible coexistence of multiple attractors and their corresponding basins of21

attraction. The last section contains our main conclusions.22

2. Non-ideal Duffing oscillator23

Several mechanical systems can be described by the Duffing equation. Tusset and Balthazar [32] studied ideal and non-24

ideal Duffing oscillatorwith chaotic behavior. They suppressed the chaotic oscillations through the application of two control25

signals. In this work, we consider a non-ideal system consisting of a mass, spring and pendulum. Fig. 1 shows a schematic26

model of the non-ideal oscillator [31], that is composed of a cart (massM),with a pendulum (massm and length r), connected27

to a fixed frame by a nonlinear spring and a dash-pot. We denote by X the displacement of the cart and by ϕ the angular28

displacement of the pendulum.29

The equations of motion, obtained by using Lagrangian approach, for both the cart and the pendulum are given by

(m + M)
d2X
dt2

+ c1
dX
dt

− k1X + k2X3
= mr


dϕ
dt

2

sinϕ −
d2ϕ

dt2
cosϕ


, (1)

mr2
d2ϕ

dt2
+ c2

dϕ
dt

+ mgr sinϕ = E − mr
d2X
dt2

cosϕ, (2)

where E is a constant source of energy. According to Eq. (1), for k1 < 0, the Duffing oscillator can be interpreted as a forced30

oscillator with a spring whose restoring force is F = k1X − k2X3. Whereas, for k1 > 0, the Duffing oscillator describes the31

dynamics of a point mass in a double well potential, such as a deflection structure building model.32

Considering x ≡ X/r and τ ≡ ω1t (ω1 ≡


k1

m+M ), the equations of motion are rewritten in the following form:

ẍ + β1ẋ − x + γ x3 = ε

ϕ̇2 sinϕ − ϕ̈ cosϕ


, (3)

ϕ̈ + β2ϕ̇ + Ω2 sinϕ = α − ẍ cosϕ (4)

for β1 ≡
c1

(m+M)ω1
, γ ≡

k2
k1
r2, ε ≡

m
m+M , β2 ≡

c2
mr2ω12

, Ω ≡
ω2
ω1

(ω2 ≡
√
g/r), and α ≡

E
mr2ω12

(source of energy).33

These equations of motion correspond to a simplified mathematical model for oscillator with a limited power supply. In34

this case, the source of energy is given by a DC motor and the parameter α is associated with its input voltage.35

3. Arnold tongues and shrimps36

In this section,wepresent numerical results identifying periodicwindows in bi-parameter space for the non-ideal Duffing37

oscillator. The simulations were performed by using the fourth-order Runge–Kutta method with a fixed step. The control38

parameterswere fixed atβ1 = 0.05,β2 = 1.5, γ = 0.1, andΩ = 1.0.We consider for dynamic investigations the variations39

of parameters ε (the ratio of the masses) and α (input voltage of the DC motor).40

First, we use a bifurcation diagram, as shown in Fig. 2(a) and (b) for ε = 0.09, to verify possible solutions generated by41

the oscillator. This diagram is constructed varying the control parameterα. For each value of the parameter, we plot the local42

maximum values of the dynamical variable x neglecting the transients. As can be seen in Fig. 2(b), the bifurcation diagram is43
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