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h i g h l i g h t s

• A method to include the effect of domain growth on the evolution of spatial correlations between proliferative and motile agents is
presented.

• We demonstrate an approximation that allows domain growth to be included in continuummodels in a tractable manner.
• A framework to study of the effects of domain growth on spatial correlations between agents for more complicated scenarios is

established.
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a b s t r a c t

Mathematical models describing cell movement and proliferation are important tools in
developmental biology research. In this work we present methods to include the effects
of domain growth on the evolution of spatial correlations between agent locations in
a continuum approximation of a one-dimensional lattice-based model of cell motility
and proliferation. This is important as the inclusion of spatial correlations in continuum
models of cell motility and proliferation without domain growth has previously been
shown to be essential for their accuracy in certain scenarios. We include the effect of
spatial correlations by deriving a systemof ordinary differential equations that describe the
expected evolution of individual and pair density functions for agents on a growing domain.
We then demonstrate how to simplify this system of ordinary differential equations by
using an appropriate approximation. This simplification allows domain growth to be
included in models describing the evolution of spatial correlations between agents in a
tractable manner.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many important biological processes during development involve themovement and proliferation of cell populations on
growing domains [1]. For example, cranial neural crest stem cells, a subset of a migratory cell population that give rise to a
diverse lineage, have been shown tomigrate along the developing cranofacial region in embryonic chickens [2–4]. Similarly
melanoblasts, neural crest precursors to melanocytes, have been shown to migrate through the developing dorsal lateral
epithelium in the embryonic mouse [5–7].
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In both of the aforementioned examples, individual-based models (IBMs) have played an important role in research into
these cell migratory processes [3,4]. Studies involving IBMs have shown, in the case of melanoblasts, that the distribution
of the migrating cells is thought to determine fur patterning and pigmentation defects such as piebaldism [8]. In the case
of cranial neural crest stem cells, IBMs have helped to elucidate the mechanisms by which a cell becomes a ‘leader’ or a
‘follower’ in the collective cell migration process [2–4]. IBMs allow an intuitive representation of cells (referred to as ‘agents’
in the IBM), and allow for complex behaviours, such as cell–cell interactions and volume exclusion, to be easily assigned to
agents in the model [9–12]. Importantly, IBMs can capture the effects of spatial correlations and heterogeneity in agent
populations, and the ramifications spatial correlations can have on density-dependent processes such as cell migration and
proliferation [13–23].

IBMs are also often amenable to approximation by population-level continuummodels. Accurate continuum approxima-
tions of IBMs are important tools for understanding biological systems as, in contrast to IBMs, they generally allow for more
mathematical analysis. This analysis can be crucial to form a mechanistic understanding of biological systems, which is not
always apparent (or feasible) from simply studying the averaged results of a large number of repeats of an IBM. For example,
using an IBM to conduct an exhaustive exploration of a large parameter space in order to examine a model’s behaviour is
often not possible. Analytical techniques can often be employed for this purpose. However, in certain scenarios standard
mean-field partial differential equation (PDE) descriptions of IBMs, such as those describing the expected evolution of the
population density, suffer from the limitation that they neglect to incorporate the impact of spatial correlations and cluster-
ing. Therefore, in order to derive accurate continuum approximations of IBMs it is often necessary to include the effects of
spatial correlations in continuum models [14–22,24–29]. Furthermore, having the mathematical tools to directly compute
spatial correlations allows them to be analysed, which can give important insights into the biological process being studied.
For instance, spatial correlations indicative of different types of cell–cell interactions can be observed in cell populations
[13,30,31], and spatial correlations between cells are thought to play an important role in tumour growth [32].

In this work we examine how domain growth affects the evolution of individual and pair density functions for agents
in an IBM. A large body of literature already exists concerning the evolution of individual and pair density functions on
static domains [14–23], themost striking examples of which show that standardmean-field PDE descriptions can be wholly
insufficient approximations of the evolution of the agent density in IBMs in certain scenarios [14,17]. We therefore also
display how to integrate the results presented here into pre-existing models. In doing so we simplify the implementation
of the methods we present so that they can be more easily applied to the study of complex systems.

The outline of this work is as follows: to begin we introduce our one-dimensional IBM and domain growthmechanism in
Section 2.1. We then define the individual and pair density functions, and derive a system of ordinary differential equations
(ODEs) describing the evolution of the individual and pair density functions with respect to time on a growing domain
in Section 2.2. To test the accuracy of this system of ODEs we compare its numerical solution with ensemble averages of
the individual and pair agent densities from the IBM for a range of initial conditions and parameter values in Section 3. In
Section 4 we integrate domain growth into existing models for calculating the evolution of pairwise spatial correlations.
These models are typically used to correct mean-field approximations for the evolution of the agent density in an IBM by
taking spatial correlations into account. In Section 5 we conclude with a discussion of the results presented.

2. Model

In this section we first introduce the IBM and the domain growthmechanismwe employ throughout this work. We then
introduce the individual and pair density functions and derive a system of ODEs describing the evolution of these functions
in the IBM.

2.1. One-dimensional IBM and the domain growth mechanism

We use an agent-based, discrete random-walk model on a one-dimensional regular lattice with lattice spacing ∆ [33]
and length L(t), where L(t) is an integer describing the number of lattice sites. Throughout this work the lattice site spacing,
∆, is always equal to one.1 All simulations are performed with periodic boundary conditions. Each agent is assigned to a
lattice site, from which it can move or proliferate into an adjacent site. If an agent attempts to move into a site that is
already occupied, the movement event is aborted. Similarly, if an agent attempts to proliferate into a site that is already
occupied, the proliferation event is aborted. This process, whereby only one agent is allowed per site, is referred to as an
exclusion process [33]. Time is evolved continuously, in accordance with the Gillespie algorithm [34], such that movement,
proliferation and growth events are modelled as exponentially distributed ‘reaction events’ in a Markov chain. Attempted
agent movement or proliferation events occur with rates Pm or Pp per unit time, respectively. That is, Pmδt is the probability
of an agent attempting to move in the next infinitesimally small time interval δt . Throughout this work the initial agent
distribution for all simulations is achieved by populating lattice sites uniformly at random until the required initial density
is achieved.2

1 Note, however, that ∆ does not have to be equal to one for the results presented here to hold.
2 An alternative method to generate the same average initial density in the simulations would be to populate each lattice site uniformly at randomwith

the probability of the initial density required. This method was also implemented and found to make no difference to the results (not shown).
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