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A concise summary is given for the nonlinear Onsager theory of Edelen.
Variational principles are built on the dissipation potential for Onsager fluxes.
A mathematical structure of the separated variational principles is elucidated.
Quantum Hall effect is analyzed in the framework of the present work.
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Separated variational principles of steady states for multi-forces and multi-currents in
transport phenomena were recently proposed by Suzuki (Suzuki, 2013) by extending
the principle of minimum integrated entropy production for a single force found by the
same author (Suzuki, 2013). On the other hand, in non-equilibrium thermodynamics,
Edelen (Edelen, 1974) generalized the linear Onsager theory to those irreversible processes
with significant thermodynamic forces by means of Onsager fluxes. Onsager fluxes by
definition satisfy a nonlinear system of reciprocity relations, vanish in thermodynamic
equilibrium, and satisfy the second law of thermodynamics. Each system of Onsager fluxes
is derivable from a dissipation potential sometimes called the flux potential. This paper
aims to elucidate a mathematical structure of the separated variational principles based on
the above work of Edelen.
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1. Introduction

The so-called separated variational

principles of steady states for multi-forces and multi-currents in transport

phenomena were recently proposed by Suzuki [1] by extending the principle of minimum integrated entropy production
for a single force found by the same author [2]. The key concept of these variational principles is to integrate in all the
intermediate processes from the equilibrium state through the final non-equilibrium steady state so as to correctly describe
nonlinear irreversible transport phenomena even in the steady states.

On the other hand, Edelen in his 1974 paper [3] generalized the linear Onsager theory to those irreversible processes
with large departures from equilibrium by means of Onsager fluxes. Onsager fluxes by definition satisfy a nonlinear system
of reciprocity relations, vanish in thermodynamic equilibrium, and satisfy the second law of thermodynamics. Each system
of Onsager fluxes is derivable from a dissipation potential, more precisely the flux potential.
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The primary objective of this paper is to elucidate a mathematical structure of the separated variational principles based
on the above work of Edelen. Following the notation, conventions, definitions, and arguments given by Edelen [3], we will
first provide a review of the decomposition theorem in which any mapping J (X, ) of the product space Ey x E, of an
M-dimensional vector space Ey and a p-dimensional vector space E, into Ey that is of class C'in X and continuous in @ can
be represented as the sum of the gradient of a scalar-valued function v (X, @) and vector-valued function U (X, w) that is
orthogonal to the radial vector X, namely, J (X, w) = Vx¥ (X, w) + U (X, w) with X - U (X, ®) = 0. The decomposition
theorem will play the central role in establishing our objective. If we write the internal entropy production in bilinear
form X - J (X, ), M-dimensional vectors X and J (X, @) are identified with the thermodynamic forces and the conjugate
thermodynamic fluxes, respectively. All vector-valued functions J (X, @) that satisfy the second law of thermodynamics
will be obtained by apply the decomposition theorem to the second law. When the components of J (X, w) are assumed
to be of class C?, which is by the way not a strong requirement from a physical point of view, any solution of the second
law is shown to satisfy the symmetry relations Vx A {J (X, ) — U (X, @)} = 0in Ey x E, where A stands for the wedge
product. These symmetry relations reduce to the nonlinear Onsager reciprocal relations referred to earlier only when the
non-dissipative part of the thermodynamic fluxes U (X, @) vanishes, and this is the case if and only if J (X, @) is uniquely
determined by J (X, ) = Vx¥ (X, w) and the dissipation potential ¥ (X, w) is given by the line integral of J (X, w) - dX
along a straight line from the origin of Ey; to the point X. In this paper we restrict our considerations to the case where
U (X, w) = 0 throughout Ej;, namely to the case of Onsager fluxes. Once the dissipation potential ¥ (X, @) is constructed,
it will be used as the Lagrangian function to formulate variational principles of minimum entropy production for stationary
states, finally elucidating a mathematical structure of the separated variational principles proposed by Suzuki [1,2] through
the associated Euler equations J (X, ) = 0.

2. Entropy production, fluxes and forces, Onsager fluxes

The internal entropy production o can be written as a bilinear form
o =0 Xa;Ja) = Xala (1)

by means of a choice of an M-dimensional vector X, (A =1~ M), whose components are identified with the
thermodynamic forces and a resulting identification of J, (A = 1 ~ M) as an M-dimensional vector, whose components
are the conjugate thermodynamic fluxes. It is to be noted that the choice of X, and J 4 is not necessarily unique. It is to be
understood that the summation convention for repeated capital Greek indices is in use. The space and time dependencies of
the thermodynamic forces and fluxes will be suppressed except when it is appropriate to make explicit references to them
in the succeeding sections.

It should be kept in mind that in a standard form of entropy production, some of the components of the thermodynamic
forces X, are spatial derivatives of other components, for example, velocity field and its spatial derivatives, and some partial
strings of X,J, correspond to inner products of vector-valued or tensor-valued thermodynamic forces and its conjugate
thermodynamic fluxes, for example, an inner product of heat flux vector and temperature gradients, that of current flux
vector and electric field, or the trace of the product of the dissipative stress tensor and the deformation-rate tensor. Although
the standard symbols used to describe the quantities involved in various forms of entropy production function for different
materials are convenient to give their immediate physical identifications, we can represent the entropy production in
bilinear form as given above for the expedience of mathematical treatment and for generality.

Now we assume constitutive relations of the form:

Ja=jas Xz, wq), (2)

where w, (@ = 1 ~ p) denote all arguments of the M functions Ji, ..., Jy that are not thermodynamic forces, namely the
thermostatic state variables such as thermodynamic temperature, thermodynamic pressure, displacement gradients, etc.
Thus,

0 =0 Xsjz Xr, wa) = 0" Xz, wg) = Xpja Xz, wa) . (3)

This relation defines the entropy production as a function defined on the (M + p)-dimensional product space Ey; x E, with
coordinates (X5, w,) for each J, = j4 (X5, w,). We mention here that all the equations to appear from now onwards hold
valid for each admissible vector w, and will not make any explicit reference to it.

Since X, = 0 defines a state that satisfies the thermal condition for internal equilibrium, namely, it is characterized by
0%leq =0and do*/0X4|eq = O, this latter equation in combination with the derivative of Eq. (3) with respect to X, implies
Jaleg = 0. This means that the thermal equilibrium state will be a stable state since there are no disturbing fluxes in this
state.

In non-equilibrium thermodynamics, Edelen [3] generalized the linear Onsager theory to those irreversible processes
with significant thermodynamic forces by means of the so-called Onsager fluxes. Onsager fluxes J, = j4, which form
a nonlinear system of constitutive relations and generalize the linear Onsager relations, are defined as a system of
thermodynamic fluxes that satisfies the following three conditions:
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