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h i g h l i g h t s

• A new coefficient is proposed with the objective of quantifying the level of information flow between financial time series.
• We find that transfer entropy coefficient has superiority over transfer entropy.
• We know the measure of transfer entropy at different scales, which is corresponding to the relevant content of financial markets.
• We find that the direction of the information flowbetween two seriesmay changewith the increasing of the transfer entropy coefficient.
• We review that the change of transfer entropy coefficient is very complex.
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a b s t r a c t

In this paper, a new coefficient is proposed with the objective of quantifying the level of
information flow between financial time series. This transfer entropy coefficient, which
provides an assessment on the multiscale information flow between measurements,
is defined in terms of the transfer entropy method and the multiscale method. The
implementation of this transfer entropy coefficient is illustratedwith simulated time series
and financial time series. Examples taken from simulated and financial data demonstrate
that the dynamic mechanism of a complex system cannot be detected solely on the basis
of transfer entropy of single scale.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Time series analysis has become an indispensable part of the financial market research, and it is one of the important
methods of financial quantitative analysis [1–4].Many research results of financialmarkets are based on time series analysis,
and the importance of financial time series analysis methods have been widely recognized in the world. A measure that has
been used in a variety of fields, and which is both dynamic and non-symmetric, is transfer entropy, developed by Schreiber
et al. [5] and based on the concept of Shannon Entropy, first developed in the information theory by Shannon [6]. Transfer
entropy shares some of the desired properties of mutual information but takes the dynamics of information transport into
account. Transfer entropy has been widely applied in plenty of fields, such as the study of cellular automata of computer
science, the study of the neural cortex of the brain, the study of social networks, statistics, and dynamical systems [7–14].
The assessment of information transfer in the global economic network helps to understand the current environment and
the outlook of an economy [15–18]. Considering the applications of transfer entropy to finance [19–23], Marschinski and
Kantz [24] analyzed the information flow between the S&P500 index of the New York Stock Exchange (USA) and the DAX
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index of the Frankfurt Stock Exchange (Germany) and detected a nonlinear information transfer between both indices at
the one minute scale, and introduced a measure called effective transfer entropy, which subtracts some of the effects of
noise or of a highly volatile time series from transfer entropy. This concept is now amply used, especially in the study of the
cerebral cortex, and is also used in financial markets [25]. Kwon and Yang [26] calculated the transfer entropy between 135
NYSE stock markets and identified the leading companies by the directivity of the information transmission. In a separate
paper [20], they analyzed the information flow between 25 stockmarkets in theworld. Their results indicate that the biggest
source of information flow is the United States.

As is defined that the transfer entropy is proposed based on information theory, and it measures the information transfer
between the two systems based on the past record values and the current observation value. Themultiscale transfer entropy
method is proposed based on transfer entropy, and it is realization of multiscale for transfer entropy. In this work, we
established amodel of transfer entropy coefficient and hope to analyze the function of the scale factor τ on transfer entropy
of the two series.

Unlike the DCCA cross-correlation coefficient and multiscale cross-sample entropy, multiscale transfer entropy does not
increase or decrease all the time along with the increasing of scale factor [27–34], its change is very complex and it is hard
to describe the trend. Information from transfer entropy of one scale is limited, which cannot accurately depict the dynamic
mechanism of a complex system. Information flow of the system changes with the time scale factor, and it is defective to
calculate transfer entropy of single scale as the index of information flow. We must be careful in the interpretation of the
direction of the information flow.

The remaining of this paper is organized as follows: Section 2 presents the transfer entropy, effective transfer entropy and
the definition of transfer entropy coefficient. Section 3 presents the results with simulated modeling. Section 4 is devoted
to provide the detailed results with the empirical study. Finally, it ends with a conclusion.

2. Methodology

2.1. Transfer entropy

Assume that Y is a discrete variable with probability distribution p(y), where y labels the different values (or states) that
Y can take. Then the Shannon entropy

HY (k) = −


i

p(y) × log2 p(y) (1)

gives the average number of bits needed to optimally encode independent draws from the distribution of Y . In the following
statements log indicates the base 2 logarithm and the summation runs over all different values of Y . Shannon’s formula is a
measure for uncertainty. The more bits are needed to achieve optimal encoding of the process, the higher is its uncertainty.
We can get the largest amount of uncertainty if all values of Y are equally likely, i.e., if Y is uniformly distributed and any
realization of Y with the same probability can be generated by a random draw. The relationship between uncertainty and
information follows from drawing on the Kullback entropy, which can be used to define the excess number of bits needed
for encoding when improperly assuming a probability distribution q(y) of Y different from p(y):

KY =


y

p(y) × log
p(y)
q(y)

. (2)

When it comes to the bivariate background, let us consider two discrete variables, X and Y , with marginal probability
distributions pX (x) and pY (y) and joint probability pXY (x, y). The mutual information of the two processes is given by
reducing uncertainty compared to the circumstance where both processes are independent, i.e. where the joint distribution
is given by the product of the marginal distributions, pXY (x, y) = p(x)p(y). The corresponding Kullback entropy, known as
the formula for mutual information, given by [35]

MXY = −


x,y

p(x, y) × log
p(x, y)
p(x)p(y)

, (3)

where the summation runs over the distinct values x and y. Any form of statistical dependencies between different variables
can be detected by mutual information. However, it is a symmetry measure and therefore any evidence related to the
dynamics of information exchange is not available. Let us concentrate on a time series context. Here, dynamical structure
can be introducedwhenwe consider transition probabilities. Let X be a stationaryMarkov process of order k, then it holds for
the probability to observe X at time t+1 in state x is conditional on the k previous observations that p(xt+1|xt , . . . , xt−k+1) =

p(xt+1|xt , . . . , xt−k). The average number of bits needed to encode one more time series observation if the previous values
are known is given by

hX (k) = −


x

p(xt+1, x
(k)
t ) × log p(xt+1|x

(k)
t ), (4)
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