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a b s t r a c t

In this paper an efficient method is presented for the analysis of those structures which can be converted
to regular forms. The stiffness matrix for such regular structures can easily be inverted using their eigen-
values and eigenvectors. Many non-regular structures can be converted to regular forms. Here the pre-
sented method solves not only all the regular forms but also non-regular forms convertible to regular
ones. The efficiency of the method is more significant when it is used in reanalyzing and rehabilitating
structures where the stiffness matrix should be inverted in each step.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years the computational ability of computers has im-
proved considerably. However, the efficient and time-saving meth-
ods are still of great interest among researchers. In structural
engineering, the analysis of large and complex structures are diffi-
cult and time-consuming unless efficient approaches are adopted.
Moreover, for reanalyzing and rehabilitating, the methods that
need repetitive processes, it becomes more important to avoid
the large structures and their corresponding matrices during find-
ing the displacements and internal forces. In addition to being
time-consuming, poor converge can be another problem in the
analysis of such large structures.

Nowadays, using prefabrication in the building construction has
resulted in some structures with regular patterns. Regular patterns
are the ones in which the stiffness matrix (Laplacian matrix) fol-
lows the rules of the graph products, group theoretical and so on
where the eigenpairs or inverse of the matrix can be quickly ob-
tained. In this paper, all repetitive, circular and symmetric forms
with a quick solution are considered as regular. Special methods
are available to solve regular structures in the work of Kaveh and
Salimbahrami [1], Kaveh and Sayarinejad [2,3], Kaveh and Nemati
[4], Hasan and Hasan [5], Williams [6,7], Thomas [8], Karpov et al.

[9] and Chan et al. [10], among many others. Other methods based
on graph products were presented by Kaveh and Rahami [11–14].
Group theoretical methods were developed by Zingoni [15–18],
Kaveh and Nikbakht [19], and Kaveh [20]. Nevertheless, most typ-
ical structures do not follow a repetitive form. However, almost all
these structures can be considered as two regular and irregular
parts. Considering a structure as a combination of regular and
irregular parts instead of an irregular model, can be similar to a
substructuring approach [21–23] in which the substructures are
composed of irregular and regular parts. Furthermore, in some
irregular structures by adding or removing some members and ele-
ments or changing magnitudes of their stiffness, a regular structure
can be obtained. This approach is similar to a rehabilitating meth-
od [24] in which the main irregular structure has the role of a
structure before restoring and the regular structure has the role
of the restored structure. When it comes to design and reanalysis
[25], the main irregular structure in each step is equal to a regular
structure plus the stiffness changes of the structural members hap-
pening in each step of design.

In these studies only substructuring, rehabilitating and reana-
lyzing were discussed. While in the present analysis, the above
mentioned methods are applied to serve the new concept of the
structures composed of regular and irregular parts or structures
convertible to regular forms considering the effects of the
changes. Here, instead of forming the stiffness matrix and solving
an irregular structure as a whole, it converted to a regular one
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that has an exact-fast solution. Then the effect of the changes is
applied. The efficiency and productivity of the method is exam-
ined comparing the results to those of the standard methods for
different examples.

2. Eigenpairs for the graph products and the solution of linear
equations through the eigenpairs

Kronecker products are well described in literature, e.g. see
Bellman [26] and Brewer [27]. The necessary and sufficient condi-
tion to diagonalize simultaneously the Hermitian matrices A1 and
A2 using one orthogonal matrix is provided in [28,29]:

A1A2 ¼ A2A1 ð1Þ

Consider a matrix M as the sum of two Kronecker products:

M ¼ A1 � B1 þ A2 � B2 ð2Þ

Consider P as a matrix which diagonalizes A1 and A2 simulta-
neously, then M can be block diagonalized by U = P � I that means
UTMU is a block diagonal matrix.

If the property is set, it can be written from Eq. (2):

kM ¼
[n
i¼1

eigðMiÞ; Mi ¼ kiðA1ÞB1 þ kiðA2ÞB2 ð3Þ

where Mis are blocks of the block diagonal matrix UTMU. Each Mi

is of dimension m (because it is a linear summation of the matri-
ces B1 and B2 of the dimension m). Since the matrix UTMU is block
diagonal, its eigenvalues are the union of the eigenvalues of each
block Mi. There are n blocks (i = 1,2, . . . ,n), therefore, kM is a set
of nm eigenvalues of the matrix UTMU. The matrices UTMU and
M are similar, and therefore kM is also the set of eigenvalues of
the matrix M.

In the above equation, the dimension of matrices A1 and A2 is
equal to n, and the dimension of matrices B1 and B2 is equal to m.

If the condition of Eq. (1) is fulfilled, then the marices A1 and A2

are diagonalized simultaneously by a vector like u. First, it is as-
sumed A1 = I, so Eq. (3) is:

kM ¼
[n
i¼1

eigðMiÞ; Mi ¼ B1 þ kiðA2ÞB2 ð4Þ

Regarding l and v as the eigenvalue and eigenvector of Mi respec-
tively, we have

ðB1 þ kB2Þv ¼ lv ð5Þ

In the following it is shown that u � v is the eigenvector of M. Using
the property of the Kronecker product we have:

ðA1 � B1 þ A2 � B2Þðu� vÞ ¼ ðA1uÞ � ðB1vÞ þ ðA2uÞ � ðB2vÞ ð6Þ

Since A1 = I is assumed, therefore

A1u ¼ u; A2u ¼ ku ð7Þ

According to Eqs. (5) and (8), Eq. (7) will be

ðA1 � B1 þ A2 � B2Þðu� vÞ ¼ u� ðB1 þ kB2Þv ¼ lðu� vÞ ð8Þ

This equation shows that u � v is the eigenvector of M.
The proof is applicable even if A1 – I. Because Eq. (1) is still

holds, using QZ transformation the two matrices Q and Z can be
found such that

QA1Z ¼ I; QA2Z ¼ D ð9Þ

where D is a diagonal matrix which converts A1 to I.
The stiffness matrix patterns in regular structures hold the

forms Fn(Am,Bm,Cm) and Gn(Am,Bm,Cm) defined as:

FnðAm;Bm;CmÞ ¼
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The form Fn(Am,Bm,Cm) represents the stiffness matrix of a repeated
path graph. In such a graph the sectors (substructures) are in a
repetitive pattern. If a sector-by-sector ordering is used for the
nodes, the pattern Fn(Am,Bm,Cm) will be achieved, where Am and
Cm represent the nodes of each sector and Bm shows that each sector
is connected to the next sector. The pattern of Am, Bm and Cm them-
selves depends on the pattern of the nodes in each sector and the
type of their connection to each other that vary from one graph to
another. The simplest form of such a pattern can be seen in shear
structures, where Am, Bm and Cm change to numbers and the tri-
diagonal block matrix gets converted to the tri-diagonal matrix.
The form Gn(Am,Bm,Cm) represents the stiffness matrix of a circulant
graph, i.e., a repeated path graph in which the first and last sectors
are also connected. The two added blocks Bm in the form Gn(Am,Bm,
Cm), indicate the connection between the first and the last blocks.

The form F with the decomposability condition A � B = C and
the form G with the condition A = C can be decomposed and solved
rapidly. Then for irregular structures, by adding or reducing some
members regular forms will be obtained.

Previously, the inverse of the Laplacian (stiffness) matrix of reg-
ular graphs (structures) was obtained using its eigenpairs [30].
Considering Ax = b we have:

fugT
j Afugjyj ¼ kjyj ¼ fug

T
j b ð11Þ

yj ¼
bj

kj
) fxgn ¼

Xn

i¼1

fugiyi ¼
Xn

i¼1

fugi
bi

ki
¼
Xn

i¼1

fugifug
T
i

ki
b ð12Þ

where ki and {u}i are the eigenpairs of the matrix A.
If we want the stiffness matrix of a repetitive structure to have

the form Gn(Am,Bm,Cm), the Cartesian coordinate system must be
changed into an appropriate one. This is because, as an example,
in a structure created via rotating an element, the structure has
the rotational symmetry property. Then the displacements, caused
by a symmetric loading, will be identical in the radial directions.
Therefore their projections in x and y directions will not be the
same. It means that the displacements in a Cartesian coordinate
system can show no symmetry. Therefore, as will be shown in
one of the examples, a cylindrical coordinate system will be suit-
able in such a structure.

3. Converting structures to regular forms and applying the
effect of the changes

A method has presented been developed for finding the eigen-
values and eigenvectors of the regular structures. Using these
eigenvalues and eigenvectors the equations of the corresponding
matrix were solved. The equation F = KD in analysis of regular
structures was solved rapidly with high accuracy using this meth-
od [30]. Here the irregular structures convertible to regular ones
are studied. These kinds of structures are converted to regular
structures by utilizing some changes in components. Then the
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