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h i g h l i g h t s

• Stochastic multi-group epidemic models with distributed delays are studied.
• We show that there is a unique global positive solution as desired in any population dynamics.
• We show that if R0 ≤ 1, the solution of the stochastic system oscillates around E0.
• We prove that if R0 > 1, the solution of the stochastic model fluctuates around E∗.
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a b s t r a c t

In this paper, we introduce stochasticity into multi-group epidemic models with
distributed delays and general kernel functions. The stochasticity in themodel is a standard
technique in stochastic population modeling. When the perturbations are small, by using
the method of stochastic Lyapunov functions, we carry out a detailed analysis on the
asymptotic behavior of the stochastic model regarding of the basic reproduction number
R0. If R0 ≤ 1, the solution of the stochastic system oscillates around the disease-free
equilibrium E0, while if R0 > 1, the solution of the stochastic model fluctuates around the
endemic equilibrium E∗. Moreover, we also establish sufficient conditions of these results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the literature of mathematical epidemiology, multi-group epidemic models have been proposed to investigate the
transmission dynamics of infectious diseases in heterogeneous host populations, such asmeasles, mumps andHIV/AIDS and
much investigation has been done onmany kinds ofmulti-groupmodels (see e.g. Refs. [1–4]). One of the earliestmulti-group
models is proposed by Lajmanovich and Yorke [5] for the transmission of gonorrhea. For a class of n-group SIS models, they
established the global dynamics and verified the global stability of a unique endemic equilibrium using a quadratic global
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Lyapunov function. The global stability of the unique endemic equilibrium, which is one of mainmathematical challenges in
analyzing multi-group models, has been verified through the Lyapunov functional technique. A resolution of this problem
has been introduced recently. In Ref. [6], Li et al. characterized a class ofmulti-group epidemicmodelswith distributeddelays
which is more general than that in Refs. [7,8], a graph-theoretical approach to themethod of Lyapunov functionals was used
to establish the global stability of the endemic equilibrium. The host population is divided into several homogeneous groups.
They studied the following multi-group epidemic models with distributed delays

S ′

k = Λk −

n
j=1

βkjSk


∞

r=0
fj(r)Ej(t − r)dr − dSkSk,

E ′

k =

n
j=1

βkjSk


∞

r=0
fj(r)Ej(t − r)dr − (dEk + ϵk)Ek, k = 1, 2, . . . , n,

(1.1)

where Sk and Ek represent the susceptible and infected but non-infectious populations in the kth group, respectively. The
parameters in system (1.1) have the following biological meanings: Λk denotes influx of individuals into the kth group,
βkj represents the transmission coefficient between compartments Sk and Ij, dSk and dEk represent death rates of S and E
populations in the kth group, respectively, ϵk stands for the rate of becoming infectious after a latent period in the kth
group. All parameter values are assumed to be nonnegative and Λk, dSk , d

E
k > 0 for all k. Here the kernel function fk(r) ≥ 0

is continuous and


∞

r=0 fk(r)dr = ak > 0. In system (1.2), the basic reproduction number R0 = ρ(M0) (the spectral radius of

M0) determines the disease occurs or not, where M0 =


βkjS0k ak
dEk + ϵk


n×n
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0
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stable in the interior of the feasible region D. It means that the disease dies out from the host population. If B = (βkj) is
irreducible and R0 > 1, then E0 is unstable and there is an endemic equilibrium E∗
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It shows that the disease will prevail and persist in a population.
On the other hand, in real life, epidemic systems are always affected by the environmental noise, which is an important

component in an ecosystem. Therefore the deterministic approach has some limitations in modeling the transmission of
an infectious disease and it cannot predict the future dynamics of the system accurately. Stochastic differential equation
models play an important role in many kinds of applied sciences, including infectious dynamics, since they can provide
some additional degree of realism compared to their corresponding deterministic models (see e.g. Refs. [9–16]). As a matter
of fact, due to the continuous fluctuations in the environment, the parameters involved in the system do not persist at such a
steady-state and always fluctuate around someaverage values. For better understanding regarding the dynamics of epidemic
models, many authors have introduced stochastic perturbations into the deterministic epidemic models to reveal the effect
of environmental fluctuations (see e.g. Refs. [17–23]). However, the fraction of papers that obtain asymptotic behavior of
stochastic multi-group epidemic models with distributed delays is relatively few.

Motivated by the above works, in this paper, we tend to do some work in this field, our method to include stochastic
perturbations is similar to that of Jiang et al. [24]. Here we assume that stochastic perturbations are of the white noise
type which are directly proportional to Sk and Ek, influenced on the Ṡk and Ėk in system (1.1). That is to say, we can replace
−dSk , −dEk by −dSk + αkḂ1k(t) and −dEk + βkḂ2k(t), respectively, where Ḃ1k(t) and Ḃ2k(t) are the white noise, i.e., B1k(t) and
B2k(t) are mutually independent standard Brownian motions defined on a complete probability space (Ω, F , P) with a
filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right continuous while F0 contains all P-null sets),
the intensity of white noise α2

k ≥ 0 and β2
k ≥ 0. Then the stochastic version corresponding to system (1.1) takes the

following form
dSk =


Λk −

n
j=1

βkjSk


∞

r=0
fj(r)Ej(t − r)dr − dSkSk


dt + αkSkdB1k(t),

dEk =

 n
j=1

βkjSk


∞

r=0
fj(r)Ej(t − r)dr − (dEk + ϵk)Ek


dt + βkEkdB2k(t).

(1.2)

The organization of this paper is as follows. In Section 2, we verify that there is a unique global positive solution of
system (1.2). In Section 3, we show that if R0 ≤ 1, then the solution of system (1.2) oscillates around E0 of system (1.1)
under certain condition. In Section 4, we prove that if R0 > 1, then the solution of system (1.2) goes around E∗ of system
(1.1) under certain condition. Finally, in order to be selfcontained, we present an Appendix containing some theory used in
the previous sections.



Download	English	Version:

https://daneshyari.com/en/article/5103403

Download	Persian	Version:

https://daneshyari.com/article/5103403

Daneshyari.com

https://daneshyari.com/en/article/5103403
https://daneshyari.com/article/5103403
https://daneshyari.com/

