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Comparison of canonical and microcanonical definitions of entropy

Michael Matty, Lachlan Lancaster, William Griffin, and Robert H. Swendsen∗
Department of Physics, Carnegie Mellon University, Pittsburgh PA, 15213, USA

(Dated: October 13, 2016)

For more than 100 years, one of the central concepts in statistical mechanics has been the micro-
canonical ensemble, which provides a way of calculating the thermodynamic entropy for a specified
energy. A controversy has recently emerged between two distinct definitions of the entropy based
on the microcanonical ensemble: (1) The Boltzmann entropy, defined by the density of states at
a specified energy, and (2) The Gibbs entropy, defined by the sum or integral of the density of
states below a specified energy. A critical difference between the consequences of these definitions
pertains to the concept of negative temperatures, which by the Gibbs definition cannot exist. In this
paper, we call into question the fundamental assumption that the microcanonical ensemble should
be used to define the entropy. We base our analysis on a recently proposed canonical definition of
the entropy as a function of energy. We investigate the predictions of the Boltzmann, Gibbs, and
canonical definitions for a variety of classical and quantum models. Our results support the validity
of the concept of negative temperature, but not for all models with a decreasing density of states.
We find that only the canonical entropy consistently predicts the correct thermodynamic properties,
while microcanonical definitions of entropy, including those of Boltzmann and Gibbs, are correct
only for a limited set of models. For models which exhibit a first-order phase transition, we show
that the use of the thermodynamic limit, as usually interpreted, can conceal the essential physics.
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I. INTRODUCTION

The thermodynamic entropy is unique, and provides a
complete description of the macroscopic properties of a
system[1]. Nevertheless, its definition is still the subject
of some dispute. Recently, a controversy has emerged
between two distinct microcanonical definitions: (1) The
Boltzmann entropy, given by the density of states at a
specified energy[2–7], and (2) The Gibbs entropy, given
by the sum or integral of the density of states below a
specified energy[8, 9]. A critical difference between the
consequences of these definitions pertains to the concept
of negative temperatures[10–12], which by the Gibbs def-
inition, cannot exist. The advocates of the Gibbs entropy
reject negative temperatures, claiming that they are in-
consistent with thermodynamic principles [13–19], while
other authors have argued that thermodynamics is con-
sistent with negative temperatures, and a different def-
inition of entropy can give correct thermodynamic pre-
dictions when the Gibbs entropy does not[20–35].

A related issue that has been raised is whether the limit
of an infinite system (thermodynamic limit) is essential
to thermodynamics[16–18, 36–39]. We take the position
that, while the approximation of an infinite system can
be useful for certain calculations, it is also necessary for
any theoretical approach to specify how to calculate the
thermal properties of finite systems.

For example, a gas in a container that can adsorb par-
ticles on its walls has both interesting (non-extensive)
physics and practical applications. However, in the limit
of an infinite system the contribution of the walls diverges
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more slowly than the contributions of the bulk. As the
thermodynamic limit is usually represented, the system
appears to be extensive, and the effect of the walls is lost.
We will show that in a similar way, the thermodynamic
limit can obscure the essential physics of first-order tran-
sitions, and we suggest an alternate representation of the
thermodynamic limit.

It has been claimed that thermodynamics should also
apply to systems as small as a single particle[13–18].
While we agree that thermodynamics should apply to
finite systems, the predicted measurements of such sys-
tems should be unique. This requires a large number
of particles so that the measured macroscopic variables
have relative fluctuations smaller than the accuracy of
the measurement.

The Boltzmann entropy predicts that negative tem-
peratures should occur wherever the density of states is
a decreasing function of energy. Since this often occurs
in a quantum spin system, the entropy in quantum sta-
tistical mechanics is central to the debate. Defining the
entropy for a quantum system has the added complex-
ity that energy eigenvalues for a finite system are re-
stricted to a discrete set of energies. It has been recently
pointed out that while microcanonical proposals for the
entropy are “a priori only defined on the discrete set
of eigenvalues”[16], the correct thermodynamic entropy,
even for quantum systems, must be a continuous function
of energy[35]. The key point in this argument is that if a
system of interest has ever been in thermal contact with
another system, separation will never leave either system
in a quantum eigenstate. Consequently, the microcanon-
ical ensemble is not an appropriate tool for calculating
the thermodynamic properties of a quantum system.

It was also argued in Ref. [35] that the appropriate
probability distribution of quantum systems should be
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