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h i g h l i g h t s

• Diversity of individual’s neighborhood promotes cooperation in networked population.
• The heterogeneous mechanism generates more obvious negative feedback mechanism.
• Middle heterogeneity guarantees the best environment of cooperation.
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a b s t r a c t

Explaining the evolution of cooperative behavior is one of the most important and
interesting problems in amyriad of disciplines, such as evolutionary biology, mathematics,
statistical physics, social science and economics Up to now, there have been a great
number of works aiming to this issue with the help of evolutionary game theory. However,
vast majority of existing literatures simply assume that the interaction neighborhood
and replacement neighborhood are symmetric, which seems inconsistent with real-world
cases. In this paper, we consider the asymmetrical neighborhood: player of type A, whose
factor is controlled by a parameter τ , has four interaction neighbors and four replacement
neighbors, while player of type B, whose factor is controlled by a parameter 1− τ , possess
eight interaction neighbors and four replacement neighbors. Bymeans of numerousMonte
Carlo simulations, we found thatmiddle τ canmake the cooperation reach the highest level
While for this finding, its robustness can be further validated in more games.
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1. Introduction

The emergence and maintenance of cooperation not only commonly appear in human societies, but also ubiquitous
in animal societies [1,2]. To explain these phenomena, evolutionary game theory has become a useful tool aiming to this
issue [3]. In particular, two paradigmatic models, prisoner’s dilemma game and the snowdrift game, have attracted much
attention and have been studied frequently [4,5]. In the basic model, each player must simultaneously choose one strategy
between cooperation (C) and defection (D). If both of them choose cooperation (or defection), they will get the reward R
(or punishment P). However, if one cooperator meets one defector, the former gets sucker’s payoff S, while the later gets
temptation T . If the payoff ranking satisfy T > R > P ≥ S and 2R > T + S, it will be the prisoner’s dilemma game; while
if the payoff ranking becomes T > R > S > P , it turns to the snowdrift game. It is obvious that, mutual defection and
cooperation–defection pair optimizes the individuals’ payoff in prisoner’s dilemma and snowdrift games, although mutual
cooperation could yield a higher collective benefit. Thus, the survival of cooperation seems to be still difficult.

Over the past decades, considerable attention has been paid to solve the above unfavorable outcome of social dilem-
mas and suggest the promotion mechanisms of cooperation [6–15]. All these mechanisms can be actually attributed to five
mechanisms: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection [16]. Among
thesemechanisms, network reciprocity, the spatial structure as a powerful mechanism to promote cooperation has been in-
depth study [17–19]. In the pioneering work [20], players were arranged on a square lattice and obtained their payoffs by
playing games with their direct neighbors, then cooperators could survive by means of forming compact clusters, which
minimizes the exploitation of defectors and protects those cooperators located in the interiors of such clusters. Along with
this seminal idea many different mechanisms supporting cooperation in network population have been extensively sug-
gested. Typical examples include costly punishment [21–23], reputation [24,25], heterogeneous activity [26–39], mobility
of players [40–43], or population density [44], partner selection [45], popularity [46], and multilayer networks [47–52], to
name but a few. Besides, co-evolution, involving the joint adjustment of both strategy and strategy-updating rule or inter-
action topology, opens another newwindow for this realm. For example, motivated by vibrant advances in network growth
and evolution [53,54], the subject has evolved into a mushrooming avenue of research that offers new ways of ensuring co-
operation, the cooperative behavior could be greatly enhanced by the co-evolution setup of non-growth dynamic network
model and death–birth dynamics based on tournament selection [55].

In spite of recent great progress, the role of asymmetric network topology receives little attention, which yet seemsmore
widespread in real society. For example, students and teachers usually have different interaction scope; Persons with wider
social circle and talent skill of communications have more chance of interactions than those with smaller social circle and
weak skill of communications. To this aim, we research the prisoner’s dilemma game and snowdrift game on asymmetric
networks, where there exist two types of players: player of type A, whose factor is controlled by a parameter τ , has four
interaction neighbors and four replacement neighbors, and player of type Bwhose factor is controlled by a parameter 1− τ ,
possesses eight interaction neighbors and four replacement neighbors. Interestingly, we find middle τ can guaranteed the
best evolution of cooperative behavior.

2. Evolution game model and dynamics

Weconsider the evolutionary prisoner’s dilemmaand snowdrift games in this study. The evolutionary prisoner’s dilemma
game is assigned as follows: the temptation T = b if one player defects while his opponent cooperates, reward R = 1 if
both cooperate, and both the punishment P = 0 for mutual defection as well as the sucker’s payoff S = 0. As a standard
practice, 1 < b ≤ 2 ensures the ranking of payoffs must satisfy T > R > P ≥ S and 2R > T + S. It is worth mentioning
that although we choose a weak version, the results are robust and can be observed in the full parameterized space as well.
For comparison, the considered snowdrift game has T = 1 + r , R = r , S = 1 − r and P = 0, where 0 ≤ r ≤ 1 represents
the so-called cost-to-benefit ratio and payoffs satisfy T > R > S > P . The payoff matrices for both games are shown in the
following formula

 C D

C 1 0
D b 0


,

 C D

C r 1 − r
D 1 + r 0


. (1)

Before the game, each player x is located on one site of networks and designated either as cooperator (C) or defector
(D) with equal probability. With regard to the interaction networks, we consider two dimensional square lattice of size
N = L2 with periodic boundary conditions. Two types of players are initially considered and their spatial distribution is
described as follows: player of type A whose faction is controlled by a parameter τ and player of type B whose faction
is 1 − τ and their factions keep constant during the whole simulation process. Player of type A (or B) has four (eight)
interaction neighbors and four replacement neighbors. Obviously, when τ = 0 (or 1), all the players x are type B (or A).
However, when 0 < τ < 1, players will have different interaction neighbors, this kind of situation is more common in
biological, social and economic systems. Therefore, this article mainly discusses how τ affects the evolution of cooperation,
which, to large extent, corresponds to exploring the effect of the inequality of players. In addition, this type of setup of
asymmetric neighborhoods (especially for interaction neighborhood) will lead to leader–follower-type relation, which is
crucial for promoting cooperation, like hub nodes on scale-free networks [49].
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