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a b s t r a c t

In this paper,we consider the pricing of credit default swaps (CDSs)with the reference asset
driven by a geometric Brownianmotion with amulti-scale stochastic volatility (SV), which
is a two-factor volatility processwith one factor controlling the fast time scale and the other
representing the slow time scale. A key feature of the current methodology is to establish
an equivalence relationship between the CDS and the down-and-out binary option through
the discussion of ‘‘no default’’ probability, while balancing the two SV processes with the
perturbationmethod. An approximate but closed-formpricing formula for the CDS contract
is finally obtained, whose accuracy is in the order of O(ϵ + δ +

√
ϵδ).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

How to effectively manage and control credit risks is a hot topic in today’s financial engineering area, because this kind
of risks is one of the most adverse factors for the development of financial markets and is also the primary cause of financial
crises. As a new kind of financial instruments, credit derivatives are nowadays playing a significant role in dealing with
problems caused by credit risks. Among them, the most basic and successful one is the so-called credit default swap (CDS).

A CDS is a contract that allows credit risks to be traded. In specific, the buyer of the CDS pays a regular fee to the seller
until the end of the contract or until a credit event occurs, whereas the seller of this contract undertakes the responsibility of
compensating the buyer in case of default. Through this kind of trading mechanics, it is clear that the CDS is able to transfer
credit risks from its buyer to the seller.

The accurate determination of the CDS price is fundamental for financial institutions, because it cannot only help those
institutions to determine capital reserves to set aside to cover for risk connected to financing and investment activities, but
also mitigate credit exposures through hedging them with credit derivatives, such as the CDS. Choosing suitable models
for credit risks and the reference asset is crucial in the accurate pricing of CDS. In the literature, the credit risks are usually
modelled by two kinds of models, i.e., the reduced-form models and the structural models. The formers are adopted by
a number of researchers including Duffie & Singleton [1], Jarrow et al. [2] and Hull & White [3]. With the flexibility in
the functional form, these models are able to provide strong in-sample fitting properties. However, they fail to capture
the wide range of default correlations and may result in poor out-of-sample behaviours, as suggested by several empirical
studies [4,5]. The structural models, as another alternative, use the evolution of the reference asset and the value of the debt
to determine the probability of default. Typical models in this category include the Merton model [6], which characterizes
the breach of default by assuming that the default would occur if the company is insolvent. Although elegant, some of the
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assumptions under this model are unrealistic. For example, under this model, it is assumed that the target company would
only default at the expiry date and the value of the company can drop to almost zero without default. However, nowadays,
the default of a company can be triggered when its value is below a certain level away from zero at any time before or at the
maturity of the bond.

As far as themodelling of the evolution of the reference asset is concerned,Merton [6] assumes that it follows a geometric
Brownian motion. This assumption is also adopted by the classical Black–Scholes (B–S) model [7] for the underlying asset.
Empirical studies have, however, suggested that this assumption is at odds with some of the real market conditions [8,9],
and usually leads to the mispricing of financial derivatives. There are a number of modifications to such an assumption
and some of them have already been used in the CDS pricing field. For example, de Malherbe [10] replaced the geometric
Brownian motion by a Poisson process, and determined the corresponding CDS price by a probabilistic approach. With
stochastic intensity models adopted for the default events, Brigo and Chourdakis [11] considered the pricing of CDS when
the counterparty risk is also taken into consideration. Recently, He & Chen [12] adopted the generalized mixed fractional
Brownian motion for the reference asset and derived a closed-form formula for the price of the CDS. However, in most of
the work mentioned above, the default of the company is assumed to be triggered only at the maturity date.

In this paper, we shall replace the constant volatility appearing in the Merton model by a stochastic volatility driven by
two time scales. This so-calledmulti-scale stochastic volatility (SV) model has many advantages over a single time scale and
is much closer to the real financial market conditions because it cannot only capture the long range memory characteristic
of the volatility correlations but also ensures the leverage effect to decay much faster than the volatility correlation [13,14].
Our solution process begins by deriving an analytical expression for the CDS price under a general default model, in which
the ‘‘no default’’ probability still needs to be determined. A key step of the solution process is to establish an equivalence
relationship between the unknown probability and the down-and-out binary option.With the perturbationmethod as used
in Ref. [13], a sequence of simplified systems governing the price of the down-and-out binary option are obtained and solved.
The price of the CDS is then obtained.

The rest of the paper is organized as follows. In Section 2, the multi-scale SV models are reviewed. In Section 3, the CDS
contract considered in this paper is specified and the general expression for the fair price of the CDS is derived. After that,
the partial differential equation (PDE) system governing the key part of the CDS price is established, based on which the
approximation solution is derived by the perturbation methods. Concluding remarks are given in the last section.

2. Multi-scale volatility models

In this section, the multi-scale SV models are briefly revisited for the sake of completeness of the paper. This kind of
models are introduced by Fouque et al. [13,15] based upon various empirical studies. Under these models, the underlying St
is assumed to follow a geometric Brownian motion with SV controlled by a fast and a slow time scale. In specific, St satisfies

dSt
St

= µdt + f (Yt , Zt)dB1,t ,

where µ is the drift rate, B1,t is a standard Brownian motion, and f is a bounded positive function representing the SV.
Moreover, f is driven by two other factors, Yt and Zt , which are governed by the following two processes as

dYt =


1
ϵ
(m − Yt)


dt +

√
2v

√
ϵ

dB2,t ,

dZt = δc(Zt) +
√

δg(Zt)dB3,t ,

where the functions c(z) and g(z) are smooth and grow at most linearly as z → ∞. v2 represents the variance of the
invariant distribution of Yt . It determines the long-run level of the volatility fluctuations. Moreover, 1

ϵ
is the mean-reverting

rate of Yt controlling the reversion speed to the long-term mean m. By assuming that ϵ is a positive small parameter, Yt is
referred to as the fast volatility factor because its autocorrelation now decays exponentially on the time scale ϵ. On the other
hand, for the process Zt , it is assumed that δ is also a small positive parameter, and Zt is referred to as the slow volatility
factor. We remark that the independence of ϵ and δ is consistent with market observations [16]. Recent studies also suggest
that ϵ and δ can be different by an order ofmagnitude (roughly ϵ v O(0.005) and δ v O(0.05)). Therefore, following amajor
assumption made in Refs. [15,13,14], we shall focus on the case of ϵ ≠ δ in the current paper. It should also be remarked
that the three Brownian motions are not necessarily independent, and the correlation among them can be expressed as
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
andWt is a standard three-dimensional Brownian motion.
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