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a b s t r a c t

Using interval theory and the second-order Taylor series, the eigenvalue problems of structures with
multi-parameter can be transformed into those with single parameter. The epsilon-algorithm is used
to accelerate the convergence of the Neumann series to obtain the bounds of eigenvalues of structures
with single interval parameter, thus increasing the computing accuracy and reducing the computational
effort. Finally, the effect of uncertain parameters on natural frequencies is evaluated. Two engineering
examples show that the proposed method can give better results than those obtained by the first-order
approximation, even if the uncertainties of parameters are fairly large.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The natural frequency analysis for structures with deterministic
parameters has been extensively developed. However, in engineer-
ing situations, the structural parameters are often uncertain, such
as the inaccuracy of the measurement, errors in the manufacturing
and assembly process, invalidity of some components and uncer-
tainty in boundary conditions etc. The uncertainties of structural
parameters may lead to large and unexpected excursion of re-
sponses that may lead to drastic reduction in accuracy and preci-
sion of the operation. Therefore, uncertainty plays an important
role in the modern engineering structural analysis.

Over the past decades, a number of methods have been devel-
oped that include uncertain model properties in the finite element
(FE) analysis and aim at the quantification of the uncertainty on
the analysis result. The probabilistic concept is by far the most
popular method for numerical uncertainty modeling. Its popularity
has led to a number of probabilistic FE procedures [1–3]. However,
probabilistic modeling is not the only way to describe the uncer-
tainty, and uncertainty is not equal to randomness. Indeed, the
probabilistic approaches are not able to deliver reliable results at
the required precision without sufficient experimental data to val-
idate regarding the joint probability densities of the random vari-
ables or functions involved. Therefore, one may recognize that
uncertainties in parameters can be modeled on the basis of altera-
tive, non-probabilistic conceptual frameworks. One such approach,
based on a set theoretic formulation, is an unknown-but-bounded
model (convex models). Such set models of uncertainty have been

applied by Deif in linear programming and system theory [4].
Recently, such set models of uncertainties in parameters have
drawn interest both from the system control robustness analysis
field and from the structural failure measures field. For example,
the convex model was introduced by Ben-Haim and Elishakoff
[5], discussed later by Lindberg [6], for the study of dynamic re-
sponse and failure of structures under pulsed parametric loading;
the convex model has been applied in determining the upper and
lower bounds of static response for structures by Liu et al. [7].
The convex model has also been applied to impulsive response,
buckling analysis and optimal design of structures with uncertain
parameters [8–11].

Since the mid-1960s, a new method called the interval analysis
has appeared. Moore [12], Alefeld and Herzberger [13] have done
the pioneering work. Mathematically, linear interval equations,
nonlinear interval equation, and interval eigenvalue problems have
been partially resolved. But because of the complexity of the algo-
rithm, it is difficult to apply these results to practical engineering
problems. Recently, the interval finite element (IFE) method was
presented by Chen et al. [14] which makes the method easier to
deal with the interval eigenvalues for closed-loop systems of struc-
tures with uncertain parameters.

It should be pointed out that the previous interval analysis
methods for computing the upper and lower bounds of response
of structures with interval parameters are based on the first-order
perturbation or the first-order Taylor series. Although the proce-
dure is easy to implement on the computer and incorporates the
finite element code, the applications of the previous methods are
limited to the case when the interval uncertainties of parameters
are small. However, if the parameter uncertainties are fairly large
or the combination of a large number uncertain parameters, the
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accuracy of the computational results will become unacceptable.
Thus, it is highly desirable to present a more accurate method for
computing the upper and lower bounds of responses of structures
with fairly large uncertainties of interval parameters.

To this end, this paper presents an efficient method to estimate
the natural frequencies of structures for the case with fairly large
uncertainties of parameters. As we known, the eigenvalues k is de-
fined as x2 in mode analysis of FEM problems, where x denotes
the natural frequencies of structures. The idea of the proposed
method is that the eigenvalues are considered as functions of the
structural parameters; using interval theory and the second-order
Taylor series expansion, we transform the eigenvalue problems of
structures with multi-parameter into those with single parameter;
The epsilon-algorithm is used to accelerate the convergence of
Neumann series to compute the eigenvalues of structures with sin-
gle interval parameter, thus the interval eigenvalues of the struc-
tures with multi-parameter are obtained and the effect of
uncertain parameters on natural frequencies is evaluated finally.
This paper is organized as follows. A brief review of mathematical
background on the interval analysis is given in the Appendix. In the
Section 2, the epsilon-algorithm for eigensolution reanalysis of
structures with fairly large changes of parameters is discussed
[15]. The Section 3 presents the definition of the interval eigen-
value problems of the interval parameter structures. In the Section
4, the proposed method for evaluating the natural frequencies of
structures with fairly large uncertainties of parameters is devel-
oped. In Section 5, two engineering examples are given to illustrate
the application of the proposed method. The results obtained by
the proposed method are compared with those obtained by the ex-
act solutions and the first-order approximation. The conclusions
are drawn in Section 6.

2. Eigensolution reanalysis with the epsilon-algorithm

2.1. The epsilon-algorithm

The epsilon-algorithm was presented [16–18] to accelerate the
convergence of a sequence.

Given a vector sequence s0; s1; s2; . . .f g, we construct the itera-
tive form to obtain the vector sequence in the epsilon-algorithm
as follows:

eðjÞ�1 ¼ 0 ð1Þ
eðjÞ0 ¼ sj ð2Þ

eðjÞkþ1 ¼ eðjþ1Þ
k�1 þ eðjþ1Þ

k � eðjÞk

h i�1
j; k ¼ 0;1;2; . . . ð3Þ

The iterative formulae (1)–(3) are similar to the scalar case ex-
cept that it requires the inverse of a vector. The definition of the in-
verse of the vector is given by Roberts [19]

u�1 ¼ u�

ðuHuÞ ¼
u�Pn

i¼1 uij j2
ð4Þ

where the u� denotes the conjugate of u and uH the conjugate and
transpose of u. It should be noted that for the undamped structure
the modal vectors are real. Thus, u� in Eq. (4) should be replaced by
u, and uH should be replaced by uT . In this case, u�1 in Eq. (4) is just
a normalized version of u itself. The vector epsilon-algorithm table
can be constructed by Eqs. (1)–(3).

2.2. The epsilon-algorithm for accelerating the convergence of
Neumann series

The eigenproblem for the structure is as follows

K0u0 ¼ k0M0u0 ð5Þ

where K0 and M0 are the stiffness and mass matrices of the finite
element assemblage. This equation will be referred to as the initial
problem in the following discussions. The perturbation method
studies the changes of eigenvalues of the system subjected to
changes in its design parameters. Therefore, if the initial system is
represented by Eq. (5), the problem becomes that to determine u
and k when K0 and M0 are perturbed to the form K0 þ DK and
M0 þ DM, respectively.

Ku ¼ kMu ð6Þ

where

K ¼ K0 þ DK ð7Þ
M ¼ M0 þ DM ð8Þ

in Eqs. (6)–(8), if we introduce the following notations

f0 ¼ k0M0u0 ð9Þ
f ¼ kMu ð10Þ
Df ¼ kMu� k0M0u0 ð11Þ

then we obtain

ðK0 þ DKÞu ¼ f0 þ Df: ð12Þ

It follows that

u ¼ ðK0 þ DKÞ�1ðf0 þ DfÞ

¼ ðIþ K�1
0 DKÞ�1K�1

0 ðk0M0u0 þ k0DMu0Þ

¼ ðIþ BÞ�1K�1
0 ðk0M0u0 þ k0DMu0Þ ð13Þ

In Eq. (13), B ¼ K�1
0 DK; k and u were approximated by k0 and u0,

respectively.
By using the Neumann series expansion, we have

~u � ðI� Bþ B2 � � � �ÞK�1
0 ðk0M0u0 þ k0DMu0Þ ð14Þ

then obtaining a series

~u0 ¼ K�1
0 ðk0M0u0 þ k0DMu0Þ

~u1 ¼ �K�1
0 DKK�1

0 ðk0M0u0 þ k0DMu0Þ ¼ �K�1
0 DK~u0

~u2 ¼ �K�1
0 DK~u1

..

.

~us ¼ �K�1
0 DKeus�1 s ¼ 3;4; . . .

ð15Þ

Assume the solution of the Eq. (6) has the following form

~u ¼ ~u0 þ ~u1 þ � � � þ ~us þ � � � ð16Þ

We define a vector sequence s0; s1; . . . ; ss; . . .f g where s0 ¼ ~u0; s1 ¼
~u0 þ ~u1; s2 ¼ ~u0 þ ~u1 þ ~u2, and in general

si ¼
Xi

j¼0

~uj i ¼ 0;1;2; . . . ; s; . . . ð17Þ

To accelerate the convergence of the sequence (17), using the
vector epsilon-algorithm (Eqs. (1)–(3)), the sequence, s0; s1; . . . ;f
ss; . . .g, can be obtained. Refs. [16–18] have pointed out that in
the epsilon iterative formulae, when i is odd, the eðjÞi are meaning-
less, and that when the i ¼ 2k ðk ¼ 1;2; . . .Þ, the vector eðjÞ2k is the
Shanks transformation. The solution is the last even row in the
epsilon-algorithm,

u ¼ eðjÞ2k ð18Þ

Compute the eigenvalues using the Rayleigh quotients

ki ¼
uT

i Kui

uT
i Mui

ð19Þ
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