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a b s t r a c t

This paper first presents simple methods for conducting up to third-order bias and variance corrections
for the quasi maximum likelihood (QML) estimators of the spatial parameter(s) in the fixed effects spatial
panel data (FE-SPD) models. Then, it shows how the bias and variance corrections lead to refined t-ratios
for spatial effects and for covariate effects. The implementation of these corrections depends on the
proposed bootstrap methods of which validity is established. Monte Carlo results reveal that (i) the QML
estimators of the spatial parameters can be quite biased, (ii) a second-order bias correction effectively
removes the bias, and (iii) the proposed t-ratios are much more reliable than the usual t-ratios.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Panel data models with spatial and social interactions have
received a belated but recently increasing attention by econome-
tricians, since Anselin (1988).1 Spatial panel data (SPD) models are
differentiated by whether they are static or dynamic and whether
they contain random effects or fixed effects. The quasi maximum
likelihood (QML) and the generalized method of moments (GMM)
are the popular methods for estimation and inference of these
models. See Lee and Yu (2010a), Lee and Yu (2015) and Anselin
et al. (2008) for general accounts on issues related to SPD model
specifications, parameter estimation, etc.

It has been recognized through the studies of spatial regression
models that QML estimators of the spatial parameter(s), although
efficient, can be quite biased (Lee, 2004; Bao and Ullah, 2007; Bao,

2013; Yang, 2015), and more so with a denser spatial weight ma-
trix (Yang, 2015; Liu and Yang, 2015a). As a result the subsequent
model inferences (based on t-ratios) can be seriously affected.
Methods of bias-correcting the QML estimators of the spatial
parameter(s) have been given for the spatial lag (SL) model (Bao
and Ullah, 2007; Bao, 2013; Yang, 2015), the spatial error (SE)
model (Liu and Yang, 2015a), and the spatial lag and error (SLE)
model (Liu and Yang, 2015b). The improved t-ratios for the SL ef-
fect is given in Yang (2015), and improved t-ratios for the covariate
effects are given in Liu and Yang (2015b) for the SL, SE and SLE
models, respectively.

Evidently, the QML estimators of the SPD models are subjected
to the same issues on the finite sample bias and finite sample
performance of subsequent inferences, but these important issues
have not been addressed.2 Given the popularity of the SPD models
among the applied researchers, it is highly desirable to have a set

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/regsciurbeco

Regional Science and Urban Economics

http://dx.doi.org/10.1016/j.regsciurbeco.2016.08.003
0166-0462/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: zlyang@smu.edu.sg (Z. Yang), sfliu@smu.edu.sg (S.F. Liu).
1 See, among others, Baltagi et al. (2003, 2013), Kapoor et al. (2007), Yu et al.

(2008, 2012), Yu and Lee (2010), Lee and Yu (2010a,b), Baltagi and Yang (2013a,b),
and Su and Yang (2015).

2 The importance of bias correction for models with nonlinear parameters is
seen from the large literature on the regular dynamic panels (see, e.g., Nickell,
1981; Kiviet, 1995; Hahn and Kuersteiner, 2002; Hahn and Newey, 2004; Bun and
Carree, 2005; Hahn and Moon, 2006; Arellano and Hahn, 2005).

Regional Science and Urban Economics 61 (2016) 52–72

www.sciencedirect.com/science/journal/01660462
www.elsevier.com/locate/regsciurbeco
http://dx.doi.org/10.1016/j.regsciurbeco.2016.08.003
http://dx.doi.org/10.1016/j.regsciurbeco.2016.08.003
http://dx.doi.org/10.1016/j.regsciurbeco.2016.08.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.regsciurbeco.2016.08.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.regsciurbeco.2016.08.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.regsciurbeco.2016.08.003&domain=pdf
mailto:zlyang@smu.edu.sg
mailto:sfliu@smu.edu.sg
http://dx.doi.org/10.1016/j.regsciurbeco.2016.08.003


of simple and reliable methods for parameter estimation and
model inference. In this paper, we focus on the SPD models with
fixed effects to provide methods for bias and variance corrections
(up to third-order) by extending the methods of Yang (2015),3 and
then to show how the bias and variance corrections lead to im-
proved t-ratios for spatial and covariate effects. Lee and Yu (2010b)
investigate the asymptotic properties for the QML estimation of
this model based on direct and transformation approaches. The
latter approach is more attractive as it provides consistent esti-
mators for all the common parameters, which is crucial in the
development of the methods for finite sample bias-corrections and
refined inferences.4

We note that while the general stochastic expansions of Yang
(2015) for nonlinear estimators are applicable to different models
including the SPD models considered in this paper, the detailed
developments of bias corrections, variance corrections and cor-
rections on t-ratio vary from one model to another. Furthermore,
the transformation approach induces errors that may no longer be
independent and identically distributed (iid) even if the original
errors are. Thus, the bootstrap method proposed by Yang (2015)
under iid errors, may not be directly applicable. We demonstrate in
this paper that when the original error distribution is not far from
normality, the standard iid bootstrap method can still provide an
excellent approximation, due to the fact that the transformed errors
are homoskedastic and uncorrelated. When the original errors are
extremely non-normal, we show that the wild bootstrap method
can improve the approximation. Monte Carlo results reveal that the
QMLEs of the spatial parameters can be quite biased, in particular
for the models with spatial error dependence, and that a second-
order bias correction effectively removes the bias. Furthermore,
Monte Carlo results show that inferences for spatial and covariate
effects based on the regular t-ratios can be misleading, but those
based on the proposed t-ratios are very reliable. We emphasize that
while corrections on the bias and variance of a point estimator are
important, it is more important to correct the t-ratios so that
practical applications of the models are more reliable. The methods
presented in this paper show a plausible way to do so. They are
simple and yet quite general as the spatial regression models are
embedded as special cases.

The rest of the paper is organized as follows. Section 2 in-
troduces the spatial panel data model allowing both spatial lag
and spatial error, and both time-specific effects and individual-
specific effects, and its QML estimation based on the transformed
likelihood function. Section 3 presents a third-order stochastic
expansion for the QML estimators of the spatial parameters, a
third-order expansion for the bias, and a third-order expansion for
the variance of the QML estimators of the spatial parameters.
Section 3 also addresses issues on the bias of QMLEs of other
model parameters, and on the inferences following bias and var-
iance corrections. Section 4 introduces the bootstrap methods for
estimating various quantities in the expansions, and presents
theories for the validity of these methods. Section 5 presents
Monte Carlo results. Section 6 discusses and concludes the paper.

2. The model and its QML estimation

For the spatial panel data (SPD) model with fixed effects (FE),
we investigate the case with both spatial lag and spatial error,
where n is large and T could be finite or large. We include both
individual effects and time effects to have a robust specification.
The FE-SPD model under consideration is,
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for = …t T1, 2, , , where, for a given t, = ( … )′Y y y y, , ,nt t t nt1 2 is an
×n 1 vector of observations on the response variable, Xnt is an
×n k matrix containing the values of k nonstochastic, individually

and time varying regressors, = ( … )′V v v v, , ,nt t t nt1 2 is an ×n 1 vector
of errors where { }vit are independent and identically distributed
(iid) for all i and t with mean 0 and variance σ0

2, cn0 is an ×n 1
vector of fixed individual effects, and αt0 is the fixed time effect
with ln being an ×n 1 vector of ones. W1n and W2n are given ×n n
spatial weights matrices where W1n generates the ‘direct’ spatial
effects among the spatial units in their response values Ynt, and
W2n generates cross-sectional dependence among the dis-
turbances Unt. In practice, W1n and W2n may be the same.

In Lee and Yu (2010b), QML estimation of (2.1) is considered by
using either a direct approach or a transformation approach. The
direct approach is to estimate the regression parameters jointly
with the individual and time effects, which yields a bias of order

( )−O T 1 due to the estimation of individual effects and a bias of
order ( )−O n 1 due to the estimation of time effects. The transfor-
mation approach eliminates the individual and time effects and
then implements the estimation, which yields consistent estimates
of the common parameters when either n or T is large. In the
current paper, we follow the transformation approach so that it is
free from the incidental parameter problem.

To eliminate the individual effects, define ( )= − ′J I l lT T T T T
1 and

let −
⎡⎣ ⎤⎦F l,T T T T, 1

1 be the orthonormal eigenvector matrix of JT,

where −FT T, 1 is the × ( − )T T 1 submatrix corresponding to the ei-
genvalues of one, IT is a ×T T identity matrix and lT is a ×T 1vector
of ones.5 To eliminate the time effects, let Jn and −Fn n, 1 be similarly
defined, and W1n and W2n be row normalized.6 For any ×n T
matrix …⎡⎣ ⎤⎦Z Z, ,n nT1 , define the ( − ) × ( − )n T1 1 transformed
matrix as

[ ]* … * = ′ … ( )− −−
⎡⎣ ⎤⎦Z Z F Z Z F, , , , . 2.2n n T n nT T T1 , 1 1 , 1n n, 1

This leads to, for = … −t T1, , 1, *Ynt , *Unt , *Vnt , and *Xnt j, for the jth
regressor. As in Lee and Yu (2010b), let * = [ * * … * ]X X X X, , ,nt nt nt nt k,1 ,2 , ,

and * = ′
− −W F W Fhn n n hn n n, 1 , 1, =h 1, 2. The transformed model we will

work on thus takes the form:
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After the transformations, the effective sample size becomes
= ( − )( − )N n T1 1 . Stacking the vectors and matrices, i.e., letting

( )= *′ … *′ ′
−Y YY , ,N n n T1 , 1 , = ( *′ … *′ )′−U UU , ,N n n T1 , 1 , = ( *′ … *′ )′−V VV , ,N n n T1 , 1 ,

3 The fixed effects model has the advantage of robustness because fixed effects
are allowed to depend on included regressors. It also provides a unified model
framework for different random effects models considered in, e.g., Anselin (1988),
Kapoor et al. (2007) and Baltagi et al. (2013). However, fixed effects model en-
counters incidental parameter problem (Neyman and Scott, 1948; Lancaster, 2000).

4 Lee and Yu (2010b) observe that when conducting a direct estimation using
the likelihood function where all the common parameters and the fixed effects are
estimated together, the estimate of the variance parameter is inconsistent when T
is finite while n is large. With data transformations to eliminate the fixed effects,
the incidental parameter problem is avoided, and the ratio of n and T does not
affect the asymptotic properties of estimates as the data are pooled. The QMLEs so
derived are shown to be consistent, and, except for the variance estimate, are
identical to those from the direct approach.

5 As discussed in Lee and Yu (2010b, Footnote 12), the first difference and
Helmert transformation have often been used to eliminate the individual effects. A
special selection of −FT T, 1 gives rise to the Helmert transformation where { }Vnt are

transformed to ( ) [ − ( + ⋯ + )]−
− + − +V V VT t

T t nt T t n t nT1

1/2 1
, 1 , which is of particular in-

terest for dynamic panel data models.
6 When Wjn are not row normalized, the linear SARAR representation of (2.4)

for the spatial panel model will no longer hold. In that case, a likelihood for-
mulation would not be feasible.
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