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a b s t r a c t

An asymptotically exact method for static and dynamic analysis of geometrically nonlinear planar frames
is illustrated. The method is based on an integration of the nonlinear equations for the beam, carried out
via a perturbation method, aiming to express the forces at the ends as series expansion of the displace-
ments at the ends and of the distributed loads. Since the beams are assumed to be inextensible and
unshearable, also reactive stresses appear among the unknowns, while compatibility conditions must
be appended to the equilibrium equations. The element state-relations are assembled for the frame,
and discrete, nonlinear perturbation equations are derived. Examples are worked out and relevant results
compared with purely numerical solutions.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Perturbation methods consist in series solutions, able to extrap-
olate information from linear systems to nonlinear systems, pro-
vided nonlinearities are sufficiently weak (typically, when the
amplitude of the response is comparatively small). Perturbation
methods, of course, cannot compete in accuracy with purely
numerical methods, but they offer the strong advantage to supply
analytical solutions, in one or more parameters, with a little com-
putational effort, which are particularly useful when the response
of a family of systems is sought for, instead of that of a specific
system.

Perturbation methods have been widely used to study free and
forced nonlinear oscillatory phenomena [1], as well as bifurcation
problems, both in static [2] and dynamical fields [3]. While
straightforward expansions or the strained coordinate method
[4] are sufficient to analyze static or buckling problems, respec-
tively, a richer variety of approaches is likely to be followed in
dynamics. Among them, the Multiple Scale Method [4] seems to
be the most performing (see e.g. [5] for a discussion); moreover,
it appears as the natural counterpart of the ‘static perturbation
method’ [6], as discussed in [7]. The method calls for solving a
chain of ode/pde linear equations, each requiring proper solvability
conditions, whose combination furnishes ‘‘amplitude modulation
equations’’ which govern the slow flow. The method works in low-
ering the dimension of the original system, thus reducing the ori-
ginal multidimensional dynamic system into a smaller equivalent

problem, similarly to what performed by the Center Manifold
reduction [8] and Invariant Manifolds theories [9].

Although the algorithm is tailored to an analytical approach (so
that innumerable examples have been worked out in literature),
numerical-analytical (or semi-analytical) versions have also been
proposed. A first attempt was made in [10], where it was stated
that ‘‘Purely analytical techniques are capable of determining the
response of structural elements having simple geometries [. . .],
but they are not applicable to elements with complicated structure
and boundaries. Numerical techniques are effective in determining
the linear response of complicated structures, but they are not
optimal for determining the nonlinear response of even simple ele-
ments [. . .]. Therefore, the optimum is a combined numerical and
perturbation technique’’.

Indeed, numerical-perturbation approaches have extensively
been applied in literature (see, e.g. [11–14]). They usually consist
in two steps, which combine (a) the FEM, which is used to formu-
late a discrete model, starting from a continuous one; and, (b) the
perturbation method, which is applied to solve the finite-dimen-
sional problem. The solution, therefore, is affected by two types
of errors, one of local type, related to discretization adopted in each
subdomain constituting the structure, the other of global type, re-
lated to solution by series of the final problem. Indeed, step (a)
could be replaced itself by a local perturbation solution, able to ex-
press (although only in an asymptotic way) the solution of the field
equation. Such an approach would avoid using ‘a priori’ selected
interpolating functions, thus overcoming locking problems, and
by making the two kinds of approximations mutually consistent.
For this reason, such an approach will be referred here as a ‘consis-
tent perturbation analysis’. Moreover, it is important to stress, that
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the adjective ‘numerical’, used here to partially connote the algo-
rithm, should not be understood in the usual meaning of ‘approx-
imation’, but rather as an ‘automatic procedure’ to numerically
evaluate the coefficients of some series expansions, that would
be impossible to perform manually. For these reasons, the proce-
dure should be considered as ‘asymptotically exact’.

This approach, however, does not seem to be thoroughly inves-
tigated, yet. An attempt along this line was performed in [15],
where, by dealing with continuous beams on sliding supports, an
algorithm transforming a nonlinear continuous problem into a
nonlinear discrete map was illustrated. Of course the consistent
perturbation method can only be applied to systems made of ele-
ments whose field equations can be asymptotically integrated for
general non-homogeneous boundary conditions, typically one-
dimensional elements. However, it is expected that it can be ap-
plied also for bi- or three-dimensional elements, in the framework
of a semi-variational (Kantorovich) approach, as those used, e.g. in
[16,17].

In this paper, the algorithm is detailed for a geometrically non-
linear planar frame, made of inextensible and shear-indeformable
beams, whose masses are lumped at their ends. The inextensible
model appears physically reasonable and analytically suitable,
since it reduces the number of field equations; in contrast, how-
ever, it calls for a proper treatment of the axial reactive stress, in
the framework of a mixed displacement-stress approach [18,19].
Inextensible frames and pantographic-type structures have also
been used in the literature to develop higher-gradient theories of
materials endowed with microscopic structures [20,21]. The gov-
erning equations are derived via a direct (equilibrium and compat-
ibility) approach, differently from [18,19], where a constrained
variational problem was tackled; moreover, more general loading
conditions are allowed here.

The paper is organized as follows. In Section 2 the nonlinear
field equations for a massless beam are asymptotically solved for
prescribed displacements at the ends and longitudinal reactive
stress, all taken as independent state-variables for the element.
This solution is asymptotically exact up-to third-order in the per-
turbation parameter, which is a measure of the amplitude of the
response. In Section 3 a state-relation for the element is drawn,
and the relations are successively assembled for the frame. Here
lumped masses are introduced and discrete nonlinear equations
are derived, expressing equilibrium at joints and kinematic com-
patibility for the elements. In Section 4 the global equations are
solved asymptotically, namely: (a) a straightforward expansion is
used for static problems, in order to express the structural re-
sponse as a function of a load-parameter; (b) the Multiple Scale
Method is applied, to evaluate both the free and forced response
of the frame, the latter relevant to harmonic loads in primary res-
onant conditions. Internal resonances have been so far excluded,
but they could be easily accounted for. As a consequence, the re-
sponse is mono-modal, but the contribution of the passive modes
(in the Center Manifold perspective) is accounted for. In Section 5
some examples have been worked out and relevant results illus-
trated. Results provided by the proposed method are validated by
a comparison with a FEM solution of both static and dynamic prob-
lems. Finally, in Section 6, some conclusions are drawn. Two
Appendixes report computational details.

2. Continuous formulation

A straight beam is considered, as an element of a planar frame.
The beam is assumed internally constrained and massless. The
continuous problem for the single element is formulated, and
asymptotically solved.

2.1. Constrained elastic problem for a single beam

The (static) nonlinear elastic problem for a rectilinear beam, is
formulated here. The beam is considered to be axially-inextensible
and shear-indeformable, and modeled as an elastic, polar, one-
dimensional, internally constrained continuum. The field equilib-
rium equations, in vector form, turn out to be (Fig. 1):

t0ðsÞ þ bðsÞ ¼ 0;

m0ðsÞ þ atðsÞ � tðsÞ ¼ 0

�
ð1Þ

where t(s) and m(s) are the internal force and couple, of reactive
and active nature, respectively; b(s) is the linear density of the
external body forces; at(s) is the unit vector tangent at the actual
configuration; s is the curvilinear abscissa (both in the reference
and actual configuration); finally, a prime denotes differentiation
with respect to s.

By introducing the components with respect to the (ax,ay,az)
element – basis, with (ax,ay) spanning the plane in which the beam
bends, and ax aligned with the beam-axis in the reference configu-
ration, it follows that (Fig. 1): m(s) = M(s)az,t(s) = R(s)ax + S(s)ay, at

(s) = cosu(s)ax + sinu(s)ay, b(s) = bx(s)ax + by(s)ay.
So that the equilibrium conditions (1) lead to three scalar

equations:

M0ðsÞ þ SðsÞ cos uðsÞ � RðsÞ sin uðsÞ ¼ 0;
R0ðsÞ þ bxðsÞ ¼ 0;
S0ðsÞ þ byðsÞ ¼ 0;

8><>: ð2Þ

The beam undergoes a planar displacement field, where u(s) =
u(s)ax + v(s)ay is the beam axis translation field and u(s) the rotation
field of the sections. The strain-displacement relation expresses the
link between the unique strain component, the curvature j(s), and
the rotation:

jðsÞ ¼ u0ðsÞ ð3Þ

while kinematic compatibility calls for internal geometrical con-
straints (Fig. 1):

u0ðsÞ ¼ cos uðsÞ � 1; v 0ðsÞ ¼ sinuðsÞ ð4Þ

The material is assumed to behave as linearly elastic, so that the
bending moment and the curvature are related by:

MðsÞ ¼ EIjðsÞ ð5Þ

with EI the (uniform) flexural stiffness.
The elastic problem of the internally constrained beam there-

fore consists of seven scalar Eqs. (2)–(5), in which M(s), R(s), S(s),
u(s), v(s), u(s), j(s) are the scalar unknowns. After combination
and partial integration, the problem is recast in the following form:

EIuðsÞ00 þ SðsÞ cos uðsÞ � RðsÞ sin uðsÞ ¼ 0

RðsÞ ¼ RB þ
Z l

s
bxðsÞds; SðsÞ ¼ SB þ

Z l

s
byðsÞds

uðsÞ ¼ uA þ
Z s

0
ðcos uðsÞ � 1Þds; vðsÞ ¼ vA þ

Z s

0
sinuðsÞds

ð6Þ

where uA :¼ u(0), vA :¼ v(0), RB :¼ R(l), SB :¼ S(l) are integration con-
stants and l is the beam length. Eq. (6) would supply the solution of
the problem once uA, vA, RB, SB were assigned, together with pre-
scribed rotations uA, uB at the ends:

uð0Þ ¼ uA; uðlÞ ¼ uB ð7Þ

However, when the beam is considered as a frame element, the
translations uB, vB (equal to those of the attached joint) should be
considered as assigned, instead of the reactive internal forces RB,
SB. In this perspective, it is convenient to consider the reactive
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