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Abstract

The BGK model of the Boltzmann equation is applied to the analysis of damping in silicon inertial MEMS working at low-moderate
frequencies. Assuming small perturbations, the linearized steady-state 2D equation is implemented in a deterministic manner in order to
avoid noise intrinsic in statistical approaches. Implementation details are discussed and the comparison with available experimental data
in terms of forces exerted on the suspended shuttle is presented.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

MEMS [21] are Micro-Electro-Mechanical-Systems with
growing diffusion in several industrial fields. An important
class of MEMS is represented by silicon inertial sensors
and actuators produced by surface micromachining pro-
cesses, like accelerometers and gyroscopes. They consist
of a collection of suspended and fixed structures coupled
into capacitors and vibrating at low/moderate frequencies.
MEMS feature electronics typical of complex IC and a
mechanical behaviour which is truly multi-physics, stem-
ming from the coupling of (at least) electrostatics, gas flows
and structural dynamics. While many features are nowa-
days fully dominated, the evaluation of fluid damping is
still an intriguing and partially unresolved topic and
strongly affects the structural response. Damping is due
to gas flow in very small gaps between the movable and
fixed elements of the MEMS. Since the gaps are typically
only a few micrometers wide, the molecular mean free path

is not negligible compared to the gap width and the gas
cannot be treated as a continuous phase. The parameter
employed to estimate the degree of rarefaction in a gas is
the Knudsen number Kn = k/d, where k is the mean free
molecular path and d is a typical flow dimension, e.g.,
the gap between electrodes [12,18]. At ambient pressure
and for several inertial MEMS like the one analyzed in Sec-
tion 4, the Knudsen number is of the order of 10�2, which
means that the flow mainly develops in the slip flow regime.
The evaluation of damping in this regime has been thor-
oughly investigated in the literature [18,21,22] and more
recently in [14,15,33] using the Stokes model and Boundary
Element techniques. According to the latter contributions,
the use of integral equations and a series of simplifying
hypotheses suited for moderate working frequencies per-
mits the full scale 3D simulation of MEMS in the slip
regime and guarantees excellent agreement with experimen-
tal results.

When environmental pressure or MEMS typical dimen-
sions are further reduced, the flow enters the transition
regime in which the regions where kinetic effects are impor-
tant have the same size of the flowfield. Several authors
have proposed to compute via analytical or semi-analytical
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approaches corrected parameters to be employed in classi-
cal continuum numerical tools. A correction has been
obtained by replacing the static viscosity coefficient with
an effective viscosity whose computation is based on the
solution of the linearized Boltzmann equation for the
one-dimensional Poiseuille and Couette flow problems
[28–30]. Alternatively, other authors (e.g., [4]) suggest to
employ slip boundary conditions which depend on the
Knudsen number and should prove accurate in the whole
pressure range. These formulas yield accurate results in
specific situations but have been obtained under several
simplifying hypotheses which are not always met by real
3D MEMS.

In principle, a correct theoretical description of gas flow
in the transition regime can be obtained by solving the
Boltzmann Equation (BE) [8,12], a complex non-linear
integro-differential equation providing the distribution
function of molecular velocities at any flowfield location.
Mathematical difficulties prevent from obtaining closed
form solutions of BE in cases of practical interest, but effi-
cient Monte Carlo methods have been developed for its
numerical treatment [5]. Unfortunately, in most MEMS
flows reference Mach numbers and deviations from local
equilibrium are small and difficult to capture by traditional
statistical Monte Carlo methods. A number of possible
modifications to statistical particle schemes have been pro-
posed [7,13] but research in this direction is still very active.
Small deviations from equilibrium could be computed
more accurately by noise-free deterministic methods. How-
ever, their huge memory demand has limited the adoption
of such methods to space homogeneous or one-dimensional
problems.

A deterministic approach to the numerical solution of
kinetic equations becomes viable if the complicated colli-
sion integral in the BE is replaced by a simpler expression.
As described below, in the BGK model kinetic equation [6]
the term giving the collisional rate of change of the distri-
bution function is simply proportional to the departure
from local equilibrium. In its simpler and more useful
form, the model contains a single disposable function
(the collision frequency) which depends on local density
and temperature and assigns the same decay rate to all
kinetic modes. Hence, the hydrodynamic limit of the model
is only partially correct since the collision frequency can be
tuned to obtain either the correct fluid viscosity or thermal
conductivity, but not both. In spite of its shortcomings, the
BGK model is often more accurate than expected, particu-
larly in problems where momentum and heath transport
are not equally important and the collision frequency can
be adjusted to match the most important transport coeffi-
cient. Its applications to rarefied gases date back to the first
semi-analytical solutions of [11,27] for Poiseuille and Cou-
ette flow. Subsequently, many different numerical applica-
tions have been presented in the literature [1,2,19,
20,23,32,34] focusing especially on high speed applications.
More recently, a number of papers have appeared where
low-speed flows of various complexity have been studied

by deterministic numerical solutions of the BGK model
kinetic equation [25,26]. However,a complete validation
of working hypotheses is still lacking since no applications
to real MEMS and comparisons with experimental data are
presented. Hence, in this paper a simple and straightfor-
ward discretization technique is adopted to solve numeri-
cally the BGK model equation associated to a rarefied
monatomic gas flowing in a two-dimensional domain.
The flow geometry is derived from a MEMS for which
experimental values of damping forces are available. It is
shown that excellent agreement with experimental results
can be obtained in a wide range of pressures. The paper
content is organized as follows: the theoretical background
is presented in Section 2, the numerical method is discussed
in Section 3, and an example is finally presented together
with the comparison with available experimental results.

2. Formulation

Let f(x,n) denote the velocity distribution function of
molecules, where x are space coordinates and n is molecu-
lar velocity. If $ denotes the gradient with respect to x, the
BGK model of the Boltzmann equation [2,12,32] reads:

of
ot
þ n � rf ¼ mðq; T ÞðfM � f Þ ð1Þ

where the right hand side relaxation term replaces the col-
lision operator of the Boltzmann equation which accounts
for binary collisions between particles; m(q,T) is the colli-
sion frequency which is assumed independent of n and fM

is the local equilibrium Maxwellian:

fM ¼
q

ð2pRT Þ3=2
exp � jn� vj2

2RT

 !
ð2Þ

It can be shown [12] that the correct fluid viscosity l(T) in
the hydrodynamic limit can be obtained from Eq. (1) by
setting

mðq; T Þ ¼ qRT
lðT Þ ð3Þ

Macroscopic velocity v, density q and temperature T are
moments of f in the velocity space:

q ¼
Z

R3

f dn; qv ¼
Z

R3

f ndn;

T ¼ 1

3Rq

Z
R3

f jn� vj2dn: ð4Þ

Finally R is the specific gas constant (the universal con-
stant divided by the molar mass). The BGK model equa-
tion (1) can thus be interpreted as a relaxation towards a
local Maxwellian equilibrium state. The gas interacts with
both fixed and movable surfaces immersed in a virtually
unconfined domain which is often truncated at a sufficient
distance from the structures. To simplify the gas–wall inter-
action, it is assumed that the scattering from the wall is
either diffused or specular or a combination of the two.
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