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Abstract

A Lagrangian model for the numerical simulation of fluid–structure interaction problems is proposed in the present paper. In the
method both fluid and solid phases are described by smoothing particle hydrodynamics: fluid dynamics is studied in the inviscid approx-
imation, while solid dynamics is simulated through an incremental hypoelastic relation. The interface condition between fluid and solid is
enforced by a suitable term, obtained by an approximate SPH evaluation of a surface integral of fluid pressure.

The method is validated by comparing numerical results with laboratory experiments where an elastic plate is deformed under the
effect of a rapidly varying fluid flow.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In many engineering applications, the forces exerted by
a fluid flow on the confining solid boundaries do not mod-
ify significantly the geometry of the boundaries. In this
cases, the fluid flow can be studied as occurring within rigid
boundaries, and the forces applied on the solid boundaries
can be obtained after the characteristics of the fluid motion
have been determined.

On the other hand, whenever the characteristic times of
the motion of the fluid flow and of the solid boundaries are
comparable, it is necessary to couple the dynamics of the
two media. These fluid–structure interaction (FSI) prob-
lems can be solved by employing either a simultaneous
(or direct) solution or a partitioned (or iterative) solution.
A description of the two procedures can be found in [1],
together with the explanation of their main advantages
and drawbacks. The simultaneous technique is particularly
convenient when the interaction between the structure and
the fluid is very strong (and the displacements of the struc-

ture are important). Structures are usually described by
Lagrangian formulations, whereas fluids are often
described by Eulerian formulations. The coupling of the
two media is usually obtained by an Arbitrary-Lagrang-
ian–Eulerian (ALE) formulation for the fluid. Significant
contributions [1–3] have been proposed in the simulation
of FSI problems in this context. Rugonyi and Bathe [1] per-
form a simplified stability analysis of the interface equa-
tions and study the long-term dynamic stability of FSI
systems by use of Lyapunov characteristic exponents. They
also show the solution of some FSI problems, as the
dynamics of spring-loaded valves in fuel pumps, that indi-
cate the actual possibility to simulate complex coupled phe-
nomena. Recent developments in the simulation of viscous
incompressible and compressible fluid flows with structural
interactions are discussed in [2]. Le Tallec and Mouro [3]
simulate the dynamics of an hydroelastic shock absorber
adopting an ALE formulation for the fluid equations.

An alternative approach to the numerical simulation of
FSI problems consists in the description of both the fluid
and the structure motion by a Lagrangian formulation.
This can be especially effective when studying problems
characterized by large displacements of the fluid–structure
interface and by a rapidly moving fluid free-surface. An
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example of these problems is the FSI inside safety valves
for pressure reduction, where an elastic plate deforms
owing to water pressure, allowing part of the fluid to flow
out at atmospheric conditions, thus causing a pressure
relief in the connected pipe. In this kind of problems, the
use of Lagrangian techniques for both the solid and the
fluid part of the problem appears promising, as it permits
to easily follow in time the motion of the fluid–solid inter-
face and to simulate the free-surface of the fluid without
any specific treatment. In particular, encouraging results
have been recently obtained by the smoothed particle
hydrodynamics (SPH) technique (see [4] for a recent review
of the method), which allows to obtain numerical solutions
of the continuum equations by defining the variables at a
set of suitable moving points, reconstructing the continu-
ous field by means of interpolation functions centred on
each moving point.

The SPH technique was first developed in astrophysics
by Lucy [5] and by Gingold and Monaghan [6]. It was then
successfully applied to the study of various fluid dynamics
problems, such as free-surface incompressible flows [7], and
viscous flows [8,9]. Since the early 1990s, SPH was applied
also to the simulation of elasticity and fragmentation in
solids: in particular, Libersky et al. [10] modelled the elastic
response of solid structures by an incremental formulation
of Hooke’s law.

SPH has been also used to simulate the interaction
between different fluids [11,12], different solids [13] and
between fluids and structures [14] in presence of explosions.
In some commercial codes, an SPH description of the fluid
motion is coupled to a finite element formulation for the
solid dynamics, in order to simulate FSI problems.

The present paper discusses a FSI model where both the
fluid and the solid parts are modelled by SPH. Aim of the
model is the analysis of FSI problems where large elastic
displacements of the solid occur, while rapidly moving
free-surfaces characterize the fluid motion.

The reliability of the numerical results yielded by the
proposed SPH FSI model is checked against laboratory
data obtained during a simple 2D interaction experiment.

2. Numerical model

2.1. Equations of motion

The motion of a continuum subjected to the action of
gravity, in isothermal conditions, is described by the conti-
nuity equation

Dq
Dt
þ q

ovi

oxi
¼ 0; ð1Þ

and by the momentum equation

q
Dvi

Dt
¼ qgi þ

orij

oxj
; ð2Þ

where t is time, q is density, vi is the velocity vector, xi is the
position vector, gi is the gravity vector, rij is the stress

tensor and the notation implies summation over repeated
indices.

The stress tensor can be decomposed into its isotropic
and deviatoric parts:

rij ¼ �pdij þ Sij; ð3Þ
where p ¼ �rkk=3 is pressure, Sij is the deviatoric stress ten-
sor and dij is the Kronecker tensor.

Pressure can be formally defined in the same way for
both fluid and solid by the following linearized equation
of state, which holds for small variations of density:

p ¼ c2
0ðq� q0Þ; ð4Þ

where c0 ¼
ffiffiffiffi
e
q0

q
for the fluid and c0 ¼

ffiffiffiffi
K
q0

q
for the solid,

being e the compressibility modulus of the fluid and K

the bulk modulus of the solid. Eq. (1) is strictly valid only
for compressible flows, while for incompressible flows it re-
duces to the divergence-free condition for the velocity field.
However, in order to avoid the complexity of the implicit
computation of pressure in a meshless method, the incom-
pressible fluid can be studied as weakly compressible, thus
retaining the validity both of (1) and of the equation of
state (4). However, since the stability of an explicit numer-
ical integration of Eqs. (1) and (2) depends on the Courant
condition, the maximum time step is inversely proportional
to the sound speed c0. It is therefore often necessary to as-
sign to the compressibility modulus a value which is lower
than the real one, in order to limit the computational time.
This leads to errors that can be reduced if a proper value is
assigned to e. In particular Monaghan [7] suggests that, in
order to limit density fluctuations to �1%, the Mach num-
ber, i.e. the ratio between the local flow velocity and c0,
must be everywhere lower than 0.1. Many applications of
weakly compressible SPH models (see, for instance
[9,11,15,16]) confirm that incompressible flows can be sim-
ulated with good precision in this way.

If the dynamics of the fluid flow is dominated by inertial
forces, viscosity effects can be safely neglected, and Sij = 0
can be assumed for fluids. For solids, the linear elastic rela-
tion between stress and deformation tensors can be derived
in time in order to obtain an evolution equation for Sij. The
use of the corotational, or Jaumann, time derivative guar-
antees that the formulation is independent from superposed
rigid rotations, resulting in the incremental formulation of
Hooke’s law corrected by the Jaumann rate:

DSij

Dt
¼ 2l Dij �

1

3
dijDij

� �
þ SikXjk þ XikSkj; ð5Þ

where

Dij ¼
1

2

ovi

oxj
þ ovj

oxi

� �
ð6Þ

is the rate of deformation tensor,

Xij ¼
1

2

ovi

oxj
� ovj

oxi

� �
ð7Þ

is the spin tensor and l is the shear modulus.
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