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Abstract

In this paper we present a unified formulation that embraces the problem of deformation of simplicial and non-simplicial, structured
and unstructured, two and three dimensional meshes. The method is formulated so as to avoid, by construction, the generation of invalid
elements. At first, we show that in all cases above, invalid elements are generated by the same collapse mechanism. Specifically, an invalid
element is formed when a mesh vertex leaves its ball, i.e. the polyhedral cavity formed by all triangular faces (in three dimensions) or
edges (in two dimensions) that are edge-connected to the vertex. Next, we show that, in all cases above, collapse of elements is avoided
by connecting with a spring each vertex in the grid with its normal projection on the ball boundaries.

The proposed method is demonstrated on a number of difficult example problems denoted by severe grid deformations, and with the
help of a variety of grid types.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Many challenging multi-physics and multi-field prob-
lems are unsteady in nature and are characterized by mov-
ing boundaries and/or interfaces. In all these cases, the
motion of a portion of the domain boundary is known
and one wants to deform the rest of the mesh in order to
accommodate these imposed displacements. For this pur-
pose a vertex repositioning problem must be solved in a
robust and efficient way, and such that invalid elements
are avoided even for large amplitude motions. The basic

idea behind all methods for this class of problems is to
define a suitable fictitious elasticity problem over the
domain.

The fictitious problem can either be continuous [7] or
discrete. For the former approach, partial differential equa-
tions are discretized in space, for example using the finite
element method. Alternatively, a lumped-parameter dis-
crete structural model can be used. To our knowledge, a
thorough comparison of these two classes of methodolo-
gies is still lacking, so the question of which of the two is
the best remains open. In this study we consider only the
discrete case, where the fictitious problem defines a suitable
network of springs associated with the mesh. The problem
then becomes how to construct the best possible network of
springs that: (a) is inexpensive to compute; (b) does not
contain collapse mechanisms; and (c) leads to graded and
well shaped deformed grids, even for large imposed
displacements.
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The most widely used and the simplest mesh deformation
technique is the spring analogy method [2], where each edge
is replaced by a spring, whose stiffness is inversely propor-
tional to the edge length. While this classical method per-
forms reasonably well in a number of cases, it does indeed
fail as soon as the local grid motion is not small compared
to the local mesh size. Unfortunately, in many practical
cases the necessary grid displacements are not small.

Indeed, there is a need for methods that can specifically
deal with large deformation problems. To address this
issue, torsional springs were added to the linear edge
springs by Farhat et al. [6,5]. The torsional springs are
designed so as to ensure that mesh entanglement will be
avoided. The method works well in practice, but it becomes
quite cumbersome in three dimensions. Furthermore, its
use for non-simplicial meshes would first require to split
quads into triangles and hexas into tetrahedra.

A new simple method of controlling collapse mecha-
nisms for simplicial meshes was presented in Ref. [3]. In
this work we develop a unified formulation that covers
the simplicial and the non-simplicial structured and
unstructured cases. Furthermore, the method is applicable
to hybrid grids composed of a mix of simplicial and non-
simplicial elements. The method is based on a network of
linear face-vertex springs in three dimensions or linear
edge-vertex springs in two dimensions. These springs effec-
tively constrain each vertex within the polyhedral ball that
encloses it, contrasting the possible collapse mechanisms of
the grid elements. In fact, the condition for a valid grid to
remain valid even after deformation is that each vertex
must remain confined to its ball. This condition holds both
for simplicial and non-simplicial meshes in two and three
dimensions. Therefore, this method avoids mesh entangle-
ment during deformation by explicitly enforcing the vertex
containment condition.

This work is organized as follows. The problem of mesh
motion is first formulated in Section 2. Next, in Section 3
we study the collapse mechanisms of both two and three
dimensional simplicial and non-simplicial meshes, and we
show that the condition for a valid mesh to remain valid
after deformation can be expressed in terms of the contain-
ment condition of each vertex within its ball. In Section 4
we formulate the ball-vertex method, by inserting springs
which resist the motion of each vertex towards each bound-
ary entity of its ball. The method is applied to two and
three dimensional problems using simplicial and non-sim-
plicial elements in Section 5. The results are quantitatively
assessed using objective mesh quality measures, rather than
using numerical coupled simulations which would raise
questions about the solver type, the coupling, the details
of the time marching procedures, etc. Finally, conclusions
are briefly discussed in Section 6.

2. Problem formulation

We consider a deforming mesh problem, i.e. a problem
where we are interested in deforming the domain X, and

hence the grid Th associated with it, in order to accommo-
date some given displacement on a portion of its boundary.
The basic idea behind all methods for this class of problems
is to define suitable fictitious structural properties for the
domain. The deformed configuration of the elastic domain
can then be computed, under the action of the driving
displacements.

In general, the domain boundary C can be partitioned
according to the following criterion:

C ¼ Cm þ C0 þ Cs; ð1Þ
as depicted in Fig. 1. The moving boundary of the domain
X is noted Cm. On the moving boundary, displacements are
known and drive the mesh deformation process. On C0 the
grid displacements are null, while on the sliding boundary
Cs displacements are constrained to be tangential to the
boundary.

In the simulation of a transient process, the driving
boundary conditions for the mesh deformation problem
are to be regarded as functions of time. Consequently, a
mesh deformation problem is solved at each time step dur-
ing the transient simulation. After imposing the boundary
conditions on C0 and Cs, one obtains the following ficti-
tious elasticity problem:

M€uM þ C _uM þ KuM ¼ Bg; ð2Þ
where uM is the vector of displacements of the moving ver-
tices of the grid, g is the vector of imposed displacements
on Cm, M, C, K are the inertia, damping and stiffness
matrices, respectively, and B is found by imposing the
boundary conditions on the various portions of the domain
boundary. More often than not, and in the present work,
only the static version of the problem is used, i.e. one sets
the time derivatives of uM to zero and solves

Fig. 1. Partitioning of domain boundary. Moving boundary: Cm; null
displacement boundary: C0; sliding boundary: Cs.

N. Acikgoz, C.L. Bottasso / Computers and Structures 85 (2007) 944–954 945



Download	English	Version:

https://daneshyari.com/en/article/510419

Download	Persian	Version:

https://daneshyari.com/article/510419

Daneshyari.com

https://daneshyari.com/en/article/510419
https://daneshyari.com/article/510419
https://daneshyari.com/

