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a b s t r a c t

Dynamic stiffness elements for plates are developed using first order shear deformation theory to carry
out exact free vibration analysis of plate assemblies. The analysis has been facilitated by the application
of Hamiltonian mechanics and symbolic computation. The Wittrick–Williams algorithm has been used as
the solution technique. Results have been extensively validated using published literature for both uni-
form and non-uniform plates. Some finite element results are also provided. The accuracy and computa-
tional efficiency of the method are demonstrated. In the final part of the investigation, significant plate
parameters are varied and their subsequent effects on the free vibration characteristics are studied.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Aircraft structures are generally modelled as assemblies of
thin-walled structural elements. In particular, the top and bottom
skins, torsion box, ribs and webs of the wing are idealised as plates.
Thus the free vibration analysis of such structures plays an impor-
tant role in aircraft design. The analysis facilitates aeroelastic and
response analyses. The purpose of this paper is to develop the
dynamic stiffness method for an accurate and efficient free vibra-
tion analysis of plates and plate assemblies.

The usually adopted finite element method [1] (FEM) is a uni-
versal tool in structural analysis which can handle complex struc-
tures. With the advent of high speed computing, the tendency to
use FEM has increased enormously and many commercially avail-
able pre and post processing programs have broadened its appeal,
making it simple and straightforward to use. FEM is an approxi-
mate method, but it generally converges to the exact solution with
increasing number of elements. However, the accuracy of results
cannot be always guaranteed. This is particularly true in dynamic
analysis at high frequencies when the FEM may become unreliable.
Thus, there is, and there will always be a need to use analytical
methods based on classical theories, wherever possible, to validate
the FEM, provide further insights and importantly, restore confi-
dence in design. One such method is that of the dynamic stiffness

method [2–8] (DSM) which gives exact results that are indepen-
dent of the number of elements used in the analysis. For instance,
one single structural element can be used in the DSM to compute
any number of natural frequencies to any desired accuracy, which
of course, is impossible in the FEM. In DSM [2–8], once initial
assumptions about the displacement field have been made, no
inaccuracy occurs in the analysis. However, for the fundamental
mode there is generally very little discrepancy in the frequencies
computed using FEM and DSM, but with increasing mode number,
significant differences can arise in both response and stability
analyses.

The DSM at present has been developed mainly for one-
dimensional elements such as bars and beams [3–9]. This is
generally accomplished by using the exact closed form solution
of their governing differential equations of motion for harmonic
oscillation, and relating a state vector of loads to the corresponding
state vector of responses at the nodes. The relationship between
the two vectors establishes the frequency dependent dynamic
stiffness matrix of the element. There are well established
computer programs such as BUNVIS-RG [10] and PFVIBAT [11]
which demonstrate the accuracy and computational efficiency of
the method. A strong point about DSM is that it has all the essential
features of FEM such as coordinate transformation, offset connec-
tions, assembly procedure, etc., and yet it retains the exactness of
results through the use of exact solution of the governing
differential equation. However, the solution techniques for FEM
and DSM are different. Unlike the conventional FEM which leads
to a linear eigenvalue problem, the DSM leads to a non-linear

0045-7949/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruc.2010.11.005

⇑ Corresponding author.
E-mail address: marco.boscolo.1@city.ac.uk (M. Boscolo).

Computers and Structures 89 (2011) 395–410

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc

http://dx.doi.org/10.1016/j.compstruc.2010.11.005
mailto:marco.boscolo.1@city.ac.uk
http://dx.doi.org/10.1016/j.compstruc.2010.11.005
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


eigenvalue problem which is generally solved by applying the
Wittrick–Williams algorithm [12,13].

The development of a dynamic stiffness (DS) matrix for a plate
element presents considerable difficulties. Wittrick and Williams
[14–17] are probably the earliest investigators who developed
DSM for simply supported (SS) plates using classical plate theory
(CPT). Their theory was later implemented in a computer program
called VICONOPT [9,18] which is well-suited to investigate the free
vibration as well as buckling behaviour of aircraft wings idealised
as prismatic plate assemblies. An important feature of their re-
search is that explicit expressions for the DS elements for SS aniso-
tropic plates were presented. However, the authors did not include
the effects of shear deformation and rotatory inertia in their work,
which are important when analysing thick plates. The inadequacy
of CPT when investigating the free vibration characteristics of thick
plates is well known and any method based on CPT will no-doubt
incur errors in modal analysis, particularly at high frequencies.
Anderson and Kennedy [19,20] advanced VICONOPT by including
the effect of shear deformation in their DS development. The expli-
cit terms of the DS matrix were not obtained by them and the
problem was solved numerically.

Many higher order shear deformation theories [21,22] have also
been developed for thick plates and composite laminates. Reddy
and Phan’s higher order plate theory [21] has been used to develop
the DS matrix of a plate by Leung and Zhou [23]. Also in this case
explicit terms of the DS matrix have not been computed.

Using the first order shear deformation theory [24] (FSDT, gen-
erally known as Mindlin plate theory in the literature), this paper
advances the aforementioned works [9,14–20,23] by developing
DS matrix of thick plates by including the important effects of
shear deformation and rotatory inertia. Despite the complexity of
the problem as a result of the inclusion of these effects, it has been
possible to generate explicit expressions for the DS elements for
the first time by using symbolic computation (Mathematica [25]).
Explicit terms of the DS matrix are essential for developing a quick
and efficient computer program which can study plate assemblies
as well as for optimisation purposes. Explicit terms of DS matrix of
a plate based on the FSDT have never been published before.

Although the dynamic stiffness (DS) development of a Mindlin
plate has apparently not been fully investigated earlier, some re-
lated works using classical resolution of differential equations with
subsequent imposition of boundary conditions (BC) have been
published. Reddy [21,26,27] amongst others, analysed the free
vibration behaviour of thick plates with the effects of shear defor-
mation and rotatory inertia. These publications are not focused on
frequency dependent DS development as in the present case, but
an individual plate on its own was studied. For an individual plate,
it is possible to determine natural frequencies and mode shapes by
applying boundary conditions and eliminating the constants from
the general solutions, without resorting to the development of
the dynamic stiffness matrix. This procedure is termed as classical

method (CM) in the subsequent text. Clearly such as a procedure
cannot be easily extended to deal with plate assemblies and some-
how lacks generality. Nevertheless, the results obtained by using
the CM are useful comparators for validation purposes. The need
to apply DSM principally arises to study free vibration behaviour
of complex structures. There are two important advantages of
DSM out of many. The first one is that two sides other than the
SS ones can be constrained without having the need to reevaluate
and eliminate the constants as would be required in the CM. More
importantly, the second advantage is that the DSM has the capabil-
ity to assemble element stiffness matrices of complex structures
consisting of plate assemblies. For instance, plates with stringers
can be analysed and yet exact results can be obtained.

The current investigation is carried out in following steps. First,
the fundamental equations of the CPT and FSDT are briefly summa-
rised and some salient features are discussed (Section 2.1). Sec-
ondly, the dynamic stiffness matrix based on the CPT is
formulated with and without the effect of rotatory inertia (Sections
2.2.1 and 2.2.2) as a precursor to the development of more ad-
vanced FSDT DSM which is dealt with in Section 2.2.3 by using
symbolic computation [25]. Subsequent to this development, the
assembly procedure and imposition of boundary conditions by
suppressing appropriate degrees of freedom (penalty method) are
explained in Section 2.3.1. This is followed by Section 2.3.2 which
highlights the application of the Wittrick–Williams (WW) algo-
rithm for computation of natural frequencies of thick plates with
various boundary conditions. The mode finding technique using
the DSM is then reported in Section 2.3.3.

Once the DS matrices using CPT and FSDT have been derived,
the results computed from the eigensolution procedure are vali-
dated in detail for rectangular plates with two opposite sides sim-
ply supported and the others having any generic boundary
conditions (BC) which can be in any combination of clamped (C),
free (F), or simply supported (SS) (Section 3.1). Section 3.2 essen-
tially gives results for a variable thickness plate for which some
comparative results are available in the literature. An insight into
the advantages and disadvantages using different methods is given
and the future potential of DSM resulting form the current research
is highlighted. Finally the paper closes with some concluding
remarks.

2. Theory

2.1. Some basic preliminaries

Fig. 1 shows the notation for displacements and forces for a
thick plate in a rectangular Cartesian coordinate system. The dis-
placement field is described for both CPT and FSDT and the corre-
sponding equations of motions with their natural boundary
conditions are briefly summarised below. For brevity, only

Fig. 1. Coordinate system and notations for displacements and forces for a plate.
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