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This paper applies the asymptotic homogenization method to predict effective properties of periodic
heterogeneous beam structures. A improved FEM formulation and algorithm of the unit cell problems
is developed. The effective properties are rewritten in terms of the nodal quantities of the FEM model
of the unit cell. With this approach, periodic beam structure of complicated microstructure can be mod-
eled by various elements and modeling techniques and solved by using the commercial software as a
black box. Numerical examples illustrate the versatility and efficiency of the method. Finally, the size
effect of basic cell in thickness direction is studied.
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1. Introduction

With the development of industrial technology, the configura-
tion of engineering structure is becoming more and more compli-
cated to meet the requirement of multifunctional, lightweight and
efficient performance. Slender heterogeneous beam structures
with the cross sectional dimensions being significantly smaller
than their length along the axial direction are widely used in engi-
neering. Using conventional numerical methods to analyze the
overall behavior of these structures may be tedious and leads to
heavy computations. Since that, this kind of structures is often
reduced as a homogeneous 1-D beam, like an Euler-Bernoulli or
Timoshenko beam.

Various approaches were developed for dimensional reduction
of these heterogeneous beam structures. The behavior of stochas-
tically heterogeneous beams including cross sectional as well as
longitudinal heterogeneity was studied in [1] based on statistical
characteristics of average displacements, reaction forces and their
statistical variance. Corn et al. [2] presented a condensation
method for simplifying finite element models of structures having
a beam-like global dynamical behavior. Wang and Cheng [3,4]
developed a reduced beam model for dynamic analysis of the
heterogeneous beam structure using the modified physical
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assumption such as block-wise rigid body motion and super beam
interpolation. Carrera et al. [5-7] constructed higher-order beam
models by adopting various expansions (polynomial expansion,
Taylor expansion, Lagrange expansion) of the displacement field
in the cross section of beam structure in the framework of the
Carrera Unified Formulation (CUF). Kennedy and Martins [8,9] pre-
sented a homogenization-based theory for layered orthotropic
beams and anisotropic beams with accurate through-section stress
and strain prediction, which builds a kinematic description of the
beam from a linear combination of fundamental state solutions.

Heterogeneous beam structures consisting of unit cells
arranged periodically in its longitudinal direction are one impor-
tant class of slender heterogeneous beam structures. Sandwich
beams, ribbed boxes and stranded ropes are such structures. In
order to simplify them, one key step is to obtain the equivalent
macro-mechanical properties based on the micro-structure of unit
cell. Once the equivalent properties are available, the original
heterogeneous structure is approximated by a homogeneous
Euler beam, by which its global behavior such as static deformation
and low order natural vibration frequencies can be predicted
within engineering accuracy.

The variational asymptotic method (VAM) developed by Cesnik
and Hodges [10] was one of the most successful approaches in
dealing with arbitrary sectional properties, but limited to the inte-
rior solutions in constant-section beams. Yu et al. [11,12] and Lee
et al. [13] extended VAM and reduced the original 3-D problem
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to one dimensional beam through simultaneous homogenization
and dimensional reduction. Commercial code VABS was developed
to implement this method numerically, but it is not apparent in the
original formulation how to define an adequate set of boundary
conditions, implement it numerically or adapt it to conventional
engineering models.

Various methods have been developed to estimate the effective
properties of composite continuum, such as self-consistent scheme
(SCS) [14], generalized self-consistent scheme (GSCS)[15], the
Mori-Tanaka method (M-T) [16], representative volume element
method (RVE) and asymptotic homogenization (AH) method. The
theoretical approaches SCS, GSCS and M-T can provide very simple
and closed-form expressions for composite continuum with single
inclusion in matrix and approximate estimation for more compli-
cate composite continuum [17,18]. RVE method and AH method
are two widely used numerical methods for composite with com-
plicated microstructures. The RVE method has clear mechanical
conception and implements simply, but it is not based on rigorous
mathematical theory and only provides approximate estimation.
AH method is regarded as a powerful two-scale method, since it
is based on rigorous mathematical perturbation theory and can
be applied to microstructure of general shape and arbitrary hetero-
geneity. It has been successfully used in predicting effective mod-
ulus of 3-D and 2-D periodic materials both analytically and
numerically (see [19-21]). The AH method was also applied to
evaluate the vibration modes of large repetitive structures by
Daya and Potier-Ferry [22-24]. Kolpakov and Kalamkarov
[25-27] developed the asymptotic homogenization theory for
heterogeneous beam structures with periodicity along its longitu-
dinal axis and extended the application scope of AH method.
Through elaborate and complicated analytical derivation, the ini-
tial 3-D heterogeneous problem splits into a microscopic 3-D prob-
lem posed on the unit cell of the structure and a macroscopic beam
problem. Based on this theory, they analyzed a group of beam
structures and some bounds of the effective stiffness were
obtained using variational principles in Kolpakov [26]. However,
analytical solutions are difficult to obtain for complex microstruc-
tures and approximate solutions are substituted with some simpli-
fications. The numerical approach to calculate the effective
properties is not given any priority in their work, because their for-
mulation is hard to combine with the finite element method.

Formal asymptotic method (FAM) as a modification to the
asymptotic homogenization method has also been used to study
the case of periodic beam structures (Buannic and Cartraud
[28,29]; Kim and Wang[30]), which is a direct application of the
two-scale method in the original 3-D governing equations of beam
structures to perform an asymptotic homogenization. But it is not
easy to relate the equations derived in FAM method with simple
engineering models and is difficult to implement numerically
either.

Cartraud and Messager [31]| followed Kolpakov [25,27],
Kalamkarov and Kolpakov [32] and Buannic and Cartraud [28,29]
and applied the asymptotic homogenization theory. The resulting
basic cell problem was implemented in a commercial finite-
element package (Samcef), but the solution procedure is not writ-
ten in the framework of FEM. Furthermore, the unit cells in their
numerical examples are all modeled by three dimensional solid
elements, which can be inefficient in many cases. One of recent
important development by Dizy et al. [33] introduced a general
methodology to evaluate both the elastic constants and local buck-
ling characteristics of composite beams with spanwise periodic
properties. They presented a comprehensive review of the topics
and pointed out that the existing solutions either were limited to
constant-section geometries, required intricate implementations,
or user-created modules or subroutines in a standard finite-
element solution package. Their method was implemented into a

off-the-shelf finite-element solver (Abaqus), and takes advantage
of some modeling features of the commercial packages such as
the tie constraints to simplify model generations. However, in their
paper the FEM formulation was not elaborated, and ten combina-
tions of loading cases were needed to calculate the effective stiff-
ness. All numerical examples are modeled by 3D solid elements.

A new implementation of the asymptotic homogenization
(NIAH) method has been developed by Cheng et al. [34] to predict
effective properties of periodic materials with periodicity in two
and three dimensions, and has been extended to the homogeniza-
tion method for plate structures with periodicity in-plane by Cai
et al. [35]. The new implementation has a rigorous mathematical
foundation of the asymptotic homogenization method, and can
be simply implemented by using commercial software as a black
box. All kinds of elements and modeling techniques available in
commercial software can be used to discretize the unit cell, so
the complicated unit cell model may remain a small scale.

Size effect of basic cell is an interesting topic when the homog-
enization method is applied to practical structure composed of a
finite number of basic cells since the basic assumption of homoge-
nization method is that the periodic basic cells extend to infinite.
For two and three dimensional continuum, discussion can be seen
in many papers (see [36-38]). Here we prefer the term of basic cell
to unit cell because it has finite cell number in practical structure.

For periodic heterogeneous beam, the periodicity in the thick-
ness direction does not exist. Since an easy implementation of
the rigorous homogenization method for effective properties of
periodic heterogeneous beam such as composite beam is not pub-
lically available, a common approximate approach to obtain its
effective properties consists of two steps. The first step is to obtain
the effective properties of the beam material by the 3D homoge-
nization method, which assume infinite periodicity in thickness
direction and neglect the effect of free upper, bottom and side sur-
faces. The second step assumes the beam to be composed of
homogenized material and obtains its effective properties by the
ordinary beam theory. The accuracy of this common approach is
mentioned in many papers. For example, Rpstam-Abadi et al.
[39] applied the weighting procedure to the material constants
through thickness direction in which the periodic condition for
the standard homogenization method is not assumed. Nasution
et al. [40] in their work assumed that the periodicity in the thick-
ness direction should be relieved. Size effects of the basic cell for
sandwich beams were studied by Dai and Zhang [41], and they
found that the traditional AH theory had limitations in capturing
size effects of the beams when the scale factor varies.

The present paper develops a finite element formulation for the
asymptotic homogenization theory of periodic beam structures,
thus extends the NIAH method in [34,35] to the beam structures
with complicated microstructures. Here “complicated microstruc-
tures” refers to the fact that the micro-structure of the unit cell
can be very complicated, for example, the unit cell can be a struc-
ture consisting of bars, beams, plates and shells, 2D or 3D contin-
uum, even of multiphase material. Box beams with periodic
transverse reinforcement, corrugate beams, sandwich beams with
various cores and stranded cables are a few representative exam-
ples to be solved in this study. Using the method, the heteroge-
neous beam structure is reduced to a classical Euler-Bernoulli
beam and a 4 x 4 stiffness matrix is obtained by solving the unit
cell problems under four generalized unit strain cases, including
extension, twisting, and bending in two directions. The improved
formulation can be implemented by following the flowchart in
Section 3.2 and using the commercial software as a black box.
Arbitrary shape and heterogeneity of the unit cell with various
structural components (solid, plate and shell, beam, etc.) and var-
ious modeling techniques can be considered. Several examples
are carried out to illustrate the validity of the proposed method,
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