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a b s t r a c t

For the harmonic analysis of plate bending problems, the Finite Element Method (FEM) is a commonly
applied numerical technique. Its element concept with polynomial approximation functions, however,
limits its applicable frequency range because of a strongly increasing computational cost. The Wave
Based Method (WBM) has can relax this by using wave functions, which satisfy the governing differential
equations.

This paper derives two distinct particular solution sets for distributed loads in the WBM. Two numer-
ical validations show the improved efficiency as compared to the FEM. The novel approach is also applied
to a plate under a TBL excitation.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Finite Element Method (FEM) [1] is one of the most com-
monly applied simulation technologies to predict the behaviour
of dynamic systems since it can tackle geometrically complex
problems by dividing the problem domain in small elements.
Simple polynomial approximation functions are most commonly
used within the elements to describe the dynamic field variables.
This procedure, involving small elements with polynomial func-
tions is the strength of the FEM, but it also constitutes a limitation.
As the frequency increases, the number of elements required to
control the interpolation and pollution errors increases more than
linearly [2–4]. The increasing model size creates an upper
frequency limit above which the computational cost becomes pro-
hibitive. The FEM should thus be considered as a low-frequency
technique.

Significant research is performed in order to alleviate these lim-
itations of the FEM. Important to mention are the so-called mesh-
less methods, where the very fine element discretisation is no
longer made. Instead, approximation functions with a higher
degree of continuity are applied. The application to thin plates
can be found in many fields of dynamic analysis: e.g. nonlinear
dynamic fracture and crack growth [5,6], buckling analysis [7,8]
and steady-state linear vibration analysis [9,10]. Another class of

techniques, partly intersecting the class of the meshless methods,
is the group of Trefftz-based methods [11,12]. These methods all
apply the same principle; the solution is approximated through a
set of so-called Trefftz functions, which inherently satisfy the
governing differential equation(s) a priori and which may violate
conditions at the domain boundary. The best known Trefftz-based
methods are the Discontinuous Galerkin Method [13], the Hybrid
Trefftz FEM [14], the Method of Fundamental Solutions [15,16],
the Variational Theory of Complex Rays [9,17], the Ultra-Weak
Variational Formulation [18–20] and the Wave Based Method
(WBM) [21], which is the focus of this paper. The key differentiator
between these methods is the way in which the boundary and
interface conditions are imposed and the specific selection of type
of basis functions.

This paper focuses on the Wave Based Method (WBM) [21],
which has the potential to alleviate the FEM’s frequency limita-
tions for problems of moderate geometrical complexity. As com-
pared to FE models, WB models are much smaller and have a
higher convergence rate, which enables faster calculations for
the same accuracy or allows going to higher frequencies for the
same computational cost. So far, the method has been success-
fully applied to acoustic problems [22–24], in-plane membrane
[25] and plate bending [10] problems, poro-elastic problems
[26,27] and, in a hybrid sense with the FEM, to fully coupled
vibro-acoustic problems with structural [28] and poro-elastic
[29] components.

The WBM for plate bending problems forms the starting point
of this paper. The research on these problem settings was initiated
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by Desmet [21]. Vanmaele et al. [10,30] studied this topic more
profoundly. So far, however, the WBM only allows for excitation
by a prescribed boundary condition, or excitation by a point force
inside the domain. Nevertheless, distributed loads are omnipre-
sent in engineering practise. They can cover a wide range of load
profiles, ranging from loaded patches to full surface distributed
loads. In the former case, concentrated loads are distributed over
a small but finite area. Depending on the ratio between the patch
dimensions and the governing wavelength, the assumption of a
localised point force no longer holds. Examples of the latter case
are the vibro-acoustic coupled problems and the excitation by a
broadband random excitation, such as e.g. a diffuse acoustic field
or a Turbulent Boundary Layer (TBL). By virtue of their stochastic
nature, these random excitations are only known in statistical
terms. They can however be elegantly described in the wavenum-
ber-frequency domain [31]. Whereas the diffuse field models yield
accurate results using only a simple expression, the excitation by a
TBL is less trivial to model. Corcos [32] developed an empirical
model describing the spectrum of the Turbulent Boundary Layer
wall pressure. Over the years, improvements have been made,
among others by Efimtsov [33] and Chase [34]. Nevertheless the
model still stands as a good estimate of the wall pressure fluctua-
tions’ so-called convective ridge [35]. An extensive overview of the
modelling of Turbulent Boundary Layer spectra can be found in
[36].

The topic of distributed loads in the WBM, however, has only
briefly been touched on so far. Desmet [21] used the acoustic wave
functions as particular solutions to the plate bending problem in
order to have fully coupled vibro-acoustic WB models. Jegorovs
[37] introduced the use of the Fourier transform for the derivation
of particular solutions and applied this to the so-called light diffu-
sion approximation to the transport theory. In this paper, the exist-
ing framework of the WBM for plate bending problems is extended
with particular solutions which can incorporate the effect of dis-
tributed loads in dynamic plate bending problems. Two different
approaches are presented. The first one is derived from the integra-
tion of the particular solution for a point force over the loaded sur-
face. In the second approach, particular solutions are derived based
on a decomposition of the distributed load in the wavenumber
domain. Both approaches are validated in terms of efficiency and
accuracy.

The paper is organised as follows; Section 2 reviews the math-
ematical formulations of the plate bending problem, with its gov-
erning dynamic equation and boundary conditions. The WBM for
plate bending problems is discussed in Section 3. The existing
framework is extended with particular solutions for distributed
loads in Section 4. Section 5 demonstrates the potential of the
developed functions with a number of academic numerical valida-
tion examples, both on a simple rectangular plate and on a more
complicated shape. Section 6 uses the newly developed particular
solutions to compute the response of a plate under a TBL excita-
tion. The paper ends with a general conclusion on the presented
work.

2. Problem definition

Consider a thin flat plate shown in Fig. 1. The steady-state
dynamic behaviour can be described by the Kirchhoff theory
[38]. According to this thin plate theory, the steady-state out-
of-plane displacements wzðrÞ, with r ¼ ðx; yÞ, are governed by the
following fourth order partial differential equation:

r 2 X : r4wzðrÞ � ks
b
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with t the thickness of the plate, E the elasticity modulus, g the
material loss factor, m the Poisson coefficient, q the material density,

x ¼ 2pf the harmonic pulsation and j2 ¼ �1. The plate is excited by
a normal point force Fz in the point rF ¼ ðxF ; yFÞ and by a distributed

normal load pðrdÞ on a part Xd of the plate surface X.
The Kirchhoff Eq. (1), being a fourth order partial differential

equation, requires two boundary conditions at every point on the
problem boundary C ¼ @X ¼ Cwh [ CmQ [ Cwm. For an easy under-
standing, the boundary conditions which are further used in the
paper, are recapitulated. The prescribed values for the out-of-plane
displacement, rotation, generalised shear force and bending
moment are written as wz; hn;Q n and mn, respectively. The differ-
ential operators associated with these derived quantities, Lhn ;Lmn

and LQn are defined as:
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with n and s the in-plane normal and tangential directions to the
plate boundary C, as indicated in Fig. 1.

With this notation, the boundary conditions can be expressed as
follows:

� Kinematic boundary conditions with prescribed values on dis-
placements and rotations:

r 2 Cwh :
Rwz ðrÞ ¼ wzðrÞ �wzðrÞ ¼ 0
Rhn ðrÞ ¼ Lhn wzðrÞ½ � � hnðrÞ ¼ 0

:

�
ð7Þ

The clamped edge boundary condition, which is used in the val-
idations, is a kinematic boundary condition with all displace-
ments and rotations constrained.
� Mechanical boundary conditions with prescribed values of the

stress resultants. However, since only two boundary conditions
can be imposed, the shear force qn and the twisting moment mns

are combined into a generalised shear force:

Fig. 1. General plate bending problem.
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