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a b s t r a c t

Hyperelastic materials are extensively employed in a wide range of applications. Although there are well-
established models for describing the mechanical behavior of the hyperelastic materials, relatively few
papers have attempted to rank different models. This paper aims to identify parameters of some consti-
tutive models for pure and simple shear of an incompressible isotropic hyperelastic material under large
deformations, and also aims to propose a strategy to rank different models. The constitutive models con-
sidered in the present analysis are the following: Mooney–Rivlin, Yeoh, Ogden (1 and 2 terms), Lopez-
Pamies (1 and 2 terms), and Gent. In the first part of the paper, the Bayesian framework is applied for
the identification of the parameters of the models, where experimental data are used to update the prior
probabilistic model of the unknown parameters. The Maximum a Posteriori Estimate is obtained, and the
error between the model prediction and the experimental data is computed to rank the models. In the
second part of the paper, the Bayesian framework is again employed, but now as an strategy for model
selection. Instead of ranking the models using the error between the model prediction and the experi-
mental result, more ingredients, such as the Ockham factor, are taken into account for the model selec-
tion. The results indicate that all models and experimental results for pure shear are in good agreement,
but Mooney–Rivlin, Gent and Yeoh models were not able to well describe the available experimental data
from simple shear. The best model for pure shear is Mooney–Rivlin and the best model for simple shear is
Ogden (2 terms), considering the available experimental data and the criteria proposed in the present
paper.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We think through models, and we use them all the time in
Engineering for design, manufacture and maintenance. However,
how good is a model to make accurate predictions? Which model
is better to describe a given experiment? There are many different
approaches to establish a criterion to answer these questions. In
the present paper we rank different models by (1) computing the
error between model prediction and experimental data, and (2)
through a Bayesian strategy for model selection. Specifically, this
work is interested in constitutive models of an incompressible iso-
tropic hyperelastic material under simple and pure shear at large
deformations.

Nowadays, hyperelastic materials, such as rubber, are exten-
sively employed in a wide range of applications. Many of these

applications involve development of components with complex
geometries under a variety of loading conditions. Sometimes
uncertainties in large deformation processes must be taken into
account [1]. In general, numerical simulation is used to solve these
types of problems [2]. In this way, a constitutive model for predict-
ing the mechanical behavior of the material is often required. There
are several models to predict the mechanical behavior of hypere-
lastic materials that can be found in the literature [3–6]. The
stress–strain response of these types of materials is derived from
a strain-energy function. Here, for comparison purpose, four classi-
cal and well-known models were chosen: Mooney–Rivlin [7,8],
Yeoh [9], Gent [10] and Ogden [11]. First- and second-order
Ogden were taken into account. Besides, a more recent model pro-
posed by Lopez-Pamies [12] (1 and 2 terms) is also considered.
These models describe well the stress–strain relationship for a uni-
axial tension test. However, few of them are capable of describing
complex load conditions. For that reason, in the present paper, sim-
ple and pure shear tests were selected [13–16].
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Although there are well-established models for describing the
mechanical behavior of the hyperelastic materials, relatively few
papers have attempted to rank different models. For instance, in
[6], a comparison of hyperelastic models for rubberlike materials
is made, where twenty hyperelastic models were considered, and
the ranking of the models was made by curve fitting.

The large number of hyperelastic material models can pose sig-
nificant challenges to the experimentalist for selecting the most
suitable model, i.e. a robust model with a small number of param-
eters. To overcome this difficult, a selection process can be used. In
this way, the main contribution of the present work is to employ
the Bayesian approach to rank different hyperelastic models for
pure and simple shear states. The Bayesian framework [17–19] is
used to identify the parameters and also to rank the different mod-
els. It is important to emphasize that this technique is advanta-
geous because it provides more information than just mean
squared error.

The strategy proposed by Beck and co-workers [17,20–23] is
employed to identify the parameters of the models and to rank
the different models. In other words, the probability models,
including the prediction error probability model, are updated with
the available experimental data, such that a quantitative assess-
ment of the model accuracy is obtained. For the Bayesian identifi-
cation, the constitutive model parameters are modeled as random
variables, and a prior probability density function (pdf) is assigned
for them. An additive Gaussian noise model, with unknown
variance, is assumed, and the prior pdf is updated with the exper-
imental data, with the aid of Metropolis Hastings/Markov Chain
Monte Carlo (MCMC) technique [24,25]. The Maximum a
Posteriori Estimate (MAP) is considered and a confidence region
is constructed for the model’s prediction. The experimental
data obtained by Moreira and Nunes [14] are used for the
comparisons.

To rank the constitutive models, first we compute the error
between the model prediction and the experimental data. Then,
employing a Bayesian model selection strategy, we investigate
the probability of each model, given the experimental data. With
such strategy, not only the error between the model prediction
and the experimental data is taken into account, but also the
Ockham factor is considered, penalizing additional parameters of
the models. In general, a good constitutive model requires few
parameters to describe the experimental data accurately. Models
with a large number of parameters can be used to fit complex
response, but special care is required in order to avoid over-fitting.

This paper is organized as follows. Next section depicts the
models analyzed. Section 3 presents the identification procedure
of the model parameters within the Bayesian framework.
Section 4 explains the Bayesian model selection strategy and
Section 5 presents the results. Finally, the concluding remarks
are made in the last Section.

2. Simple and pure shear models

The concepts of simple and pure shear are well known in
mechanics. Simple shear is related to a state of deformation, while
pure shear denotes a state of stress that is characterized by tr
r ¼ 0. The Cauchy stress tensor r of an incompressible isotropic
hyperelastic material may be expressed in terms of strain-energy
function W [8,26].

� for pure shear

r11 ¼ 2ðk2 � k�2Þ @W
@I1
þ @W
@I2

� �
ps
; ð1Þ

with the strain invariants denoted by I1 ¼ I2 ¼ k2 þ k�2 þ 1.
� for simple shear

r12 ¼ 2k
@W
@I1
þ @W
@I2

� �
ss
; ð2Þ

where k is defined as amount of shear. In this case, the amount
of shear can be expressed as a function of stretch, i.e. k ¼ k� k�1

with k > 1. The strain invariants are defined by I1 ¼ I2 ¼ k2 þ 3.

There are several strain-energy density functions that are used
to describe the mechanical behavior of hyperelastic materials.
Here, for comparison purpose, Mooney–Rivlin, Yeoh, Ogden,
Lopez-Pamies and Gent models are used.

1. Mooney–Rivlin model
One of the first strain energy function was proposed by Mooney
and extended by Rivlin. The well-known Mooney–Rivlin model
is given by [8]:

WMR ¼ C10ðI1 � 3Þ þ C01ðI2 � 3Þ; ð3Þ

with the initial shear modulus equal to l ¼ 2ðC10 þ C01Þ.

r11 ¼ lðk2 � k�2Þ; ð4Þ

r12 ¼ lk: ð5Þ

2. Yeoh model
The model proposed by Yeoh, which is referred to as general-
ized neo-Hookean materials, is based on three terms that
depends only on the first strain invariant. The Yeoh model is
defined by [9]:

WY ¼ C1ðI1 � 3Þ þ C2ðI1 � 3Þ2 þ C3ðI1 � 3Þ3; ð6Þ

where C1; C2 and C3 denote material parameters. The initial
shear modulus is equal to l ¼ 2C1.

r11 ¼ 2ðk2� k�2Þ½C1þ2C2ðk2þ k�2�2Þþ3C3ðk2þ k�2�2Þ2�;
ð7Þ

r12 ¼ 2k½C1þ2C2ðk2þ k�2�2Þþ3C3ðk2 þ k�2 �2Þ2�: ð8Þ

3. Ogden model with 1 term
An alternative model for hyperelastic materials was postulated
by Ogden, where the strain energy is a function of the principal
stretches, instead of the first strain invariant. The Ogden model
is expressed by [11]:

WO ¼
XN

p¼1

lp

ap
ðkap

1 þ kap
2 þ kap

3 � 3Þ; ð9Þ

where the initial shear modulus is l ¼ 1
2

PN
p¼1lpap with

lpap > 0. Considering only one term of series, the Cauchy stress
components are

r11 ¼ l1ðk
a1 � k�a1 Þ; ð10Þ

r12 ¼ l1
k

1þ k2 ðk
a1 � k�a1 Þ; ð11Þ

with k ¼ kþ
ffiffiffiffiffiffiffiffi
k2þ4
p

2 ð> 1Þ and l ¼ l1a1
2 .

4. Ogden model with 2 terms
Taking into consideration the first two terms of the series [11]:

r11 ¼ l1ðk
a1 � k�a1 Þ þ l2ðk

a2 � k�a2 Þ; ð12Þ

r12 ¼
k

1þ k2 ½l1ðk
a1 � k�a1 Þ þ l2ðk

a2 � k�a2 Þ�; ð13Þ

with l ¼ l1a1þl2a2
2 .
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