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a b s t r a c t

A residual-based Gaussian process model (GPM) framework is proposed for finite element model updat-
ing (FEMU). The core idea of the proposed method is that GPM is adopted to characterize the relationship
between the residual and the selected parameters. Within the residual-based GPM framework, the pow-
erful variance-based global sensitivity analysis can be analytically implemented for parameter selection,
and the rate of convergence of the optimization process is accelerated substantially by providing the ana-
lytical gradient and Hessian information. A real-world arch bridge is presented to illustrate the proposed
residual-based GPM framework and verify its feasibility in FEMU.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Researchers in engineering area make extensive use of finite ele-
ment model (FEM) for understanding real-world structures of inter-
est and for decision-making (usage, maintenance, operations, etc.).
Specifically, FEM enables engineering researchers to facilitate the
model-based tasks, including but not limited to damage diagnosis,
structural health monitoring, structural safety and risk assessment.
Accordingly, a high-fidelity FEM that precisely represents the actual
behavior of structures is of great importance. FEM is developed
based on the engineering design blueprints, essentially an idealiza-
tion of a real structure, which is likely to misrepresent the as-built
real structure. As a result, the analytical results obtained from the
idealized FEM often differ from those measured from a real struc-
ture. FEM updating (FEMU) aims to improve the agreement
between the analytical and measured results by calibrating uncer-
tain model parameters. The basic idea behind FEMU is that struc-
tural responses including dynamic and static ones are the
functions of model parameters and thus adjusting the uncertain
model parameters will result in the corresponding changes to struc-
tural responses, leading to an increase in correlation between ana-
lytical responses and their experimental counterparts.

In the past several decades, a great deal of research work has
been dedicated to updating FEM in light of test results in order to
precisely model the real-world structures. Comprehensive

literature surveys on state-of-the-art in FEMU techniques can be
found in Refs. [1–3]. Based on whether the methods for FEMU
modify the elements of the system matrices (mass, stiffness and
possibly damping matrices) directly or tune model parameters
(e.g., structural geometric and material parameters) iteratively,
they can be broadly classified as either direct or iterative. The direct
method, which is a one-step approach for performing FEMU, first
appears in the field of FEMU. Although the direct method is quite
computationally-efficient and yields an exact agreement between
analytical and measured responses as well, it is still limited in its
applicability due to the loss of physical meaning in the resulting
system matrices. The updated system matrices fail to preserve the
features of sparseness, positive-definiteness, symmetry, etc. As a
consequence, applications of the direct method to FEMU have sel-
dom been explored over recent years. The iterative method (also
called sensitivity-based or parametric method) involves using sen-
sitivity technique to calibrate model parameters related to struc-
ture, which is typically a constrained optimization problem. In
contrast to the direct method, the iterative method has the advan-
tage of guaranteeing the physical meaning of the updated system
matrices, and, moreover, the updated results can be well inter-
preted by the corrected model parameters. Therefore, the iterative
method has become mainstream in the field of FEMU.

Although appropriate for FEMU, the iterative method remains
computationally-intensive since it needs a large number of model
evaluations to find the most optimal set of parameters ensuring
the global minima of the objective function. The complex physical
systems are usually modeled by the high-resolution FEMs involving
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up to tens or hundreds of millions of elements using commercial
finite element analysis (FEA) packages (e.g., ANSYS), which may
require many minutes, hours or even days for a single run. For
example, it is reported that Ford Motor Company spends about
36–160 h in carrying out one crash simulation on a full-size passen-
ger car [4]. When adopted to update the high-fidelity FEM of the
complex physical systems, the iterative method may tend to be nei-
ther affordable nor feasible. Furthermore, the high-resolution FEM
is constructed on the platform of the FEA packages, while the
advanced optimization techniques (e.g., evolutionary algorithms
and multi-objective optimization scheme), which can be easily
implemented or available in numerical software (e.g., MATLAB),
are may not offered by these FEA packages. To link FEA and numer-
ical software together, one has to develop an interface between
them, which will make the process of FEMU more complicated
and also increase the computational burden because of repeatedly
calling FEA package platform from numerical software platform.

Recently, metamodel is widely used as the surrogate model of
the time-consuming FEM in order to circumvent the issue of high
computational cost in FEMU. Among various metamodeling
approaches, response surface method (RSM) is early and widely
used for FEMU because of its appealing strengths, such as simple
algebraic structure, easy implementation, and low effort. Schultze
et al. [5] propose the use of RSM in feature extraction, parameter
effect assessment, and nonlinear model updating. Steenackers
and Guillaume [6] employ the RSM in FEMU considering measure-
ment uncertainty. Ren and his colleagues [7,8] study the feasibility
of RSM in the real-world bridge structure model updating using
dynamic and static properties, respectively. Fang and Perera [9]
present a RSM-based FEMU scheme for damage identification
using D-optimal design. Shahidi and Pakzad [10] develop an
improved RSM that is applicable to both linear and nonlinear
FEMU. As a powerful alternative to metamodel, Gaussian process
model (GPM), also termed Kriging process, has been exponentially
applied in a variety of engineering problems, including design
optimization [11,12], uncertainty quantification [13–16],
stochastic finite element analysis [17,18], global sensitivity analy-
sis [19–21], to name but a few. GPM possesses the following main
admirable merits: (1) the data-driven feature of GPM enables it not
to be restricted to a certain algebraic structure of the input–output
relationship and guarantees the high flexibility in modeling a com-
plex physical system; (2) GPM allows for assessing the uncertainty
of the predictions by providing not just a predicted expectation but
also the associated prediction variance; and (3) for the determinis-
tic computer code simulation (e.g., FEM), GPM is able to yield exact
predictions exactly over the observed data. Although GPM has
become an attractive metamodeling tool for various engineering
applications, little work has been done in applying GPM to
FEMU. To our best knowledge, the limited research exploring the
application of GPM to FEMU can be found in the works of
Khodaparast et al. [22], Erdogan et al. [23], and Wan and Ren
[24]. This study proposes a residual-based GPM framework for
FEMU, which is different from the traditional metamodeling
approach. To be specific, the traditional metamodeling approach
refers to approximating the relationship between the selected
parameters and structural responses, which can be either dynamic
or static, whereas the proposed residual-based GPM approach aims
at mapping the relationship between the selected parameters and
the residual that will be minimized for the subsequent FEMU.

In this paper, we propose a residual-based GPM framework for
FEMU. The core of this method is twofold: (1) GPM is used as the
surrogate model; and (2) the residual between FEM-derived and
measured responses instead of FEM-derived response is chosen
as the output of the GPM. Within the residual-based GPM
framework, our work consists of three main contributions in the
following aspects:

� We propose the use of residual as the target response in meta-
model construction, so only one metamodel will be required for
FEMU. In contrast, the traditional metamodeling approach for-
mulates the metamodel for each structural response, which
means that the number of metamodel is the same as the num-
ber of structural responses. Each metamodel corresponds to the
relationship between one certain type of the measured response
and the selected parameters, so the residual is the composite
function of the selected parameters. For example, assume we
have 5 measured modal frequencies and 2 measured displace-
ments, and then we have to establish a total of 7 metamodels
associated with these measured responses. Therefore, our pro-
posed residual-based metamodeling approach is superior to
the traditional method in terms of the computational efficiency.
� Within residual-based GPM framework, we present an analyti-

cal implementation of variance-based global sensitivity analysis
(GSA) for parameter selection. According to the first-order and
total sensitivity indices (SIs) of the powerful variance-based
GSA, we can have a deep understanding of how the selected
parameters quantitatively influence the residual, thereby deter-
mining which parameters should be selected for being updated.
This present analytical variance-based GSA based on GPM is
more efficient and accurate than the Monte Carlo simulation
(MCS) in conjunction with GPM because it implements
variance-based GSA in an analytical manner.
� It is well known that FEMU procedure is in essence a con-

strained optimization problem, that is finding the global mini-
mum of the objective function subject to constraints. Within
the aid of GPM, the constrained optimization task may be easily
carried out using the optimization toolbox available in MATLAB.
We derive the closed form expressions for the first derivative
(i.e., gradient) and second derivative (i.e., Hessian) of the objec-
tive function w.r.t. parameters. The analytical gradients can be
utilized to accelerate the optimization process dramatically so
that the model updating procedure becomes more efficient.

2. Residual-based GPM framework for FEMU

2.1. Gaussian process model

The probabilistic, non-parametric GPM is derived from a
Bayesian setting, which allows for uncertainty quantification of
the predictions. GPM treats model outputs as a random function
with the associated probability distribution modeled through a
Gaussian process prior; based on the maximum likelihood esti-
mate of the training set, a Gaussian process prior combined with
Gaussian likelihood results in a posterior Gaussian process over
prediction at a new point. GPM is completely governed by its mean
function and covariance function. The zero mean function is
chosen because of the lack of prior knowledge for the overall trend
of the latent function [25] and also for the sake of the simplified
GPM formulation. On the other hand, we adopt the squared expo-
nential covariance function below, which maintains an appealing
property in that it leads to a smooth, infinitely differentiable
function.
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