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In this paper we extend the Sussman-Bathe spline-based hyperelastic isotropic model to predict the
behavior of transversely isotropic isochoric materials. The model is based on an uncoupled decomposi-
tion of the stored energy function and a generalization of the inversion formula used by Sussman and
Bathe. The present extension introduces some approximations that, in all studied cases, do not yield rel-
evant deviations from the experimental data. The isotropic model results in a particular case of the pres-
ent formulation. Several possibilities of user-prescribed experimental data are addressed. The model is
used to predict experiments of calendered rubber and of biological tissues.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

As it is well known, in the stress and strain analysis of solids
there are important practical consequences when considering large
deformations. Whereas at small strains the constitutive equations
for elastic behavior are simply obtained from the determination of
some constants that linearly relate stress and strain components,
at large strains the situation is considerably more complex [1].
Materials that achieve large (or moderate) elastic strains behave
in a nonlinear manner [2]. Polymers [3] and biological tissues [4]
are just some examples. For metals elastic behavior is frequently
considered linear in elastoplastic models when using logarithmic
stress and strain measures [5,6], but nonlinear when using other
strain measures. In order to account for such nonlinearity, specially
in computational elastoplasticity, initial formulations for finite ele-
ment implementation used objective rate (incremental) forms in
which the material parameters where constant or a function of
the strain state. Stress integration was complex in order to pre-
serve objectivity. In elasto-plasticity, the Rolph-Bathe [7] and
Hughes-Winget [8] algorithms are just two examples. As shown
by Simé and Pister [9], these formulations are not truly elastic
(hence hypoelastic), and energy is not preserved during closed cy-
cles [2]. In order to be elastic, the elastic tensor at large strains has
to fulfill some compatibility conditions, apart from full symmetry
[10]. Those conditions are automatically accomplished if the con-
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stitutive equation is directly obtained from a known stored energy
expression or model.

Many such models exist in the literature aimed at the predic-
tion of the behavior of different materials. The Ogden [11], Moo-
ney-Rivlin [12,13], Arruda-Boyce [14], Blatz-Ko [15] and Yeoh
[16] models are some of the best known. These models have a gi-
ven “shape” and some parameters to be determined from a best fit
of the experimental data for a given range of expected strains. In a
practical problem, the engineer must select the model and the
strain range. If fortunate, the predicted behavior may capture the
global behavior, but it may miss some finer (probably important)
details. Thus one may wonder if having an error on the preserved
energy is more important than having an error on the stress—strain
behavior if the problem is not of repeated cyclic loading type, sac-
rificing accuracy for physical and mathematical correctness. Fur-
thermore, what an analyst would like is to just prescribe some
stress—strain points and automatically obtain a predicted behavior
consistent with the prescribed data. In that sense, there is a temp-
tation to go back to hypoelastic formulations.

A solution to this dilemma has been recently given by Sussman
and Bathe [17]. In their work they propose the use of splines to
model the stress-strain behavior. The splines are computed such
that they pass through experimental stress—strain points and have
the desired continuity. Hence, they “exactly” capture the experi-
mental data. Stresses are then expressed in terms of those splines.
The key point of their paper is that whereas these initial interpolat-
ing splines are not derived from a stored energy function (and
hence the behavior is not hyperelastic), the relationship may be in-
verted. A new set of functions is obtained, which still pass through
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the experimental data and that is derived from a stored energy
function (hence the behavior is hyperelastic). Furthermore, compu-
tational efficiency is not a relevant issue because the domain of the
new set may be divided into equally spaced subdomains so the
location within the desired subdomain is a simple operation. The
model is a genuine case of WYPIWYG (What You Prescribe is What
You Get) philosophy which is still physically and mathematically
correct.

The Sussman-Bathe model is valid for isotropic hyperelasticity.
The purpose of the present work is to extend the model for trans-
versely isotropic materials, as for example some fiber composites,
rubber-like materials or biological tissues. We consider the incom-
pressible case, which of course may be extended to the quasi-
incompressible case through a volumetric stored energy. Unlike
the isotropic model, several cases need to be considered, each case
for a given set of possible experimental data. We address those
cases in the following sections and also consider isotropy as a spe-
cial case. Some predictions for actual experiments taken from the
literature are presented.

The outline of the paper is as follows. In the following section
we review some concepts and procedures essential in our formula-
tion (“building blocks™). Then we can easily introduce the actual
procedure on these footings, taking into consideration several pos-
sible sets of experiments to obtain the needed data. In the fourth
section we show some examples.

2. Building blocks

In this section we briefly review some concepts and formula-
tions that we will use in the procedure outlined in the following
section. Once these building blocks are explained and understood,
the procedure is relatively simple.

2.1. Splines based piecewise interpolation used in the model

Assume that during a tensile test (or any other test), we have
obtained some experimental data given by N+1 points of a
stress—strain behavior (y; = 6, x; = E), i=1,...,N+1inany de-
fined stress and strain measure. We are interested in the interpola-
tion of such data with a given degree of smoothness, see Fig. 1. A
handy well known method (specially in CAD) is the use of splines.
In our case we will use piecewise cubic splines. In essence the
method consists on fitting a third order polynomial between two

o Measured Data Points

points such that the slope y'(x = x;) = Y; and the derivative of the
slope y”(x = x;) = Y; are also the same at both sides of each exper-
imental point. Physically, as seen below, this means that we wish
the moduli and its derivative to be continuous, which are attractive
smoothness requirements for hyperelastic behavior. In order to ob-
tain the usual tridiagonal system of equations, each subdomain is
normalized to & = (x — x;)/(xi+1 — X;) € [0,1] so all N polynomia have
the expression

Pi(¢ €[0,1)) = @i + bi¢ + ;& + d;& (1)

For each subdomain, the conditions y; = P{(0), y;.1 = P(1), are given,
where y; are the known experimental data. Between any two subdo-
mains, two additional conditions are established

Pi1(1) = Pi(0) ==Y (2)
P! (1) = P{(0) = 2¢i_1 + 6d;_1 = 2¢; (3)

1

where Y; are also unknowns. However, using (1) and (2), for each
subdomain it is straightforward to verify that

ai=Yy; (=Pi(0))

bi=Y; (: P:(O)) (4)
Ci =31 —Y) —2Yi=Yia (=P{(0)/2)

d,‘ = 2(yl _yH,]) + Yi + YH»] (: H///G)

so the Y; may be used as basic variables and Eq. (3) results for each
subdomain in

Yiii +4Yi+ Y1 =300 —Yio1) (5)

Only the first and last Y; cannot be determined with this set of equa-
tions. A usual (“natural”) choice to obtain the additional equations
is to set P{(0) = 0 and Py (1) = 0 in Eq. (3), where N is the number of
subdomains. Then the following tridiagonal system of N+ 1 equa-
tions is obtained

21 Y, 3002 —y1)
14 1 Y, 3065 =w)
1 41 Yn 3N —Yno1)

1 2| | Ynn 3Wni1 =)

which can be efficiently solved using the TDMA (Thomas) algo-
rithm, well known in the CFD literature. Obviously, other boundary
conditions may be applied.

Initial Spline Interpolation

A Calculated Hyperelastic Stresses

Fig. 1. Assumed “measured” data points &, (E;) and E- (E;), their initial non-uniform piecewise spline interpolations o1(E;) and E,(E;) and calculated stresses &, (E;) using Eq.

(48) (or Eq. (49)) with the corresponding spline-based energy functions (see Fig. 2).
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