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A B S T R A C T

Background: Economic evaluations often measure an intervention
effect with mean overall survival (OS). Emerging types of cancer
treatments offer the possibility of being “cured” in that patients can
become long-term survivors whose risk of death is the same as that of
a disease-free person. Describing cured and noncured patients with
one shared mean value may provide a biased assessment of a therapy
with a cured proportion. Objective: The purpose of this article is to
explain how to incorporate the heterogeneity from cured patients into
health economic evaluation. Methods: We analyzed clinical trial data
from patients with advanced melanoma treated with ipilimumab (Ipi;
n ¼ 137) versus glycoprotein 100 (gp100; n ¼ 136) with statistical
methodology for mixture cure models. Both cured and noncured
patients were subject to background mortality not related to cancer.
Results: When ignoring cured proportions, we found that patients
treated with Ipi had an estimated mean OS that was 8 months longer
than that of patients treated with gp100. Cure model analysis showed
that the cured proportion drove this difference, with 21% cured on Ipi

versus 6% cured on gp100. The mean OS among the noncured cohort
patients was 10 and 9 months with Ipi and gp100, respectively. The
mean OS among cured patients was 26 years on both arms. When
ignoring cured proportions, we found that the incremental cost-
effectiveness ratio (ICER) when comparing Ipi with gp100 was
$324,000/quality-adjusted life-year (QALY) (95% confidence interval
$254,000–$600,000). With a mixture cure model, the ICER when
comparing Ipi with gp100 was $113,000/QALY (95% confidence interval
$101,000–$154,000). Conclusions: This analysis supports using cure
modeling in health economic evaluation in advanced melanoma.
When a proportion of patients may be long-term survivors, using cure
models may reduce bias in OS estimates and provide more accurate
estimates of health economic measures, including QALYs and ICERs.
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Introduction

Progress in the treatment of cancer has led to some patients
being cured of their disease in the sense that they become long-
term survivors whose risk of death is the same as that of a person
who did not have cancer. Cured patients can induce heteroge-
neity in the overall survival (OS) of a patient population that may
not be adequately described with traditional statistical analyses.
For example, when some patients are cured, the mean OS of the
full patient population is equal to the weighted average of the OS
among cured and the OS among noncured patients, weighted by
the relative proportions. The mean OS of cured patients is often
much longer than the mean OS of noncured patients, and may in
fact exceed the observation period of clinical studies. Grouping all
patients together and reporting one shared mean value may
provide an incomplete assessment of a therapy that cures a
proportion of patients. In addition, statistical methods that do
not account for cured patients may provide biased assessments
of OS.

Mean OS is a measure frequently used in health economic
evaluation, for example, in the evaluation of the mean effect of
a treatment. This article aims to explain how to incorporate
the heterogeneity from cured patients into health economic

evaluation. In particular, we will explain how to modify the
calculation of quality-adjusted life-years (QALYs) and incremen-
tal cost-effectiveness ratios (ICERs) to account for cured patients.
The ICER summarizes the additional value of a treatment and is
defined as the ratio of the difference between mean treatment
costs and the difference in mean treatment effects:

(Mean cost treatment1 � Mean cost treatment2)/(Mean effect
treatment1 � Mean effect treatment2).

Mean effects are often measured directly with mean OS or
with survival weighted by quality of life, or QALYs. As an
illustration, we will use clinical trial data from patients with
advanced-stage melanoma treated with ipilimumab (Ipi) to show
how health economic evaluations that explicitly account for
cured patients can differ from standard analyses that do not
model cured patients.

Cure Models

Statistical methodology for cure models has been an active area
of research for more than 50 years. The most popular framework
for cure models is to assume that the study population is a
mixture of patients who are cured and patients who are not cured
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and to explicitly model this mixture [1–4]. In this framework,
regression models can be used to estimate the probability that a
patient is cured and to predict the survival of patients who are
not cured.

At present, there are no diagnostic tests that can assess
whether an individual patient is cured of his or her cancer. So,
long-term follow-up is the ultimate way to determine whether a
cured subpopulation exists. For studies with limited follow-up,
cure models may be able to provide only preliminary estimates,
and the confidence intervals (CIs) of estimates should reflect the
ambiguity. Cure models are useful when survival curves indicate
a possibly heterogeneous patient population, with some patients
failing quickly and others having long survival. These models do
not identify individual patients as cured but rather supply a
probability that a patient is cured.

Logistic regression is a common choice to model the proba-
bility that a patient is cured [5]. Both patients who are cured and
patients who are not cured are subject to “background” mortality
not related to cancer. Patients who are not cured are subject to
additional mortality from their cancer, and parametric survival
models are often used to estimate this excess mortality. Mathe-
matically, the survival for a population with a cure fraction can
be written as follows:

S t,xð Þ¼SB t,xð Þ p xð Þþ 1�p xð Þ� �
SE t,xð Þ� �

, ð1Þ

where S(t) denotes the survival at time t, SB(t, x) denotes the
background mortality at time t conditional on covariates x, p(x)
denotes the probability of being cured conditional on covariates
x, and SE(t, x) denotes the mortality due to disease (e.g., cancer) at
time t conditional on covariates x [6,7]. We note that SB, p, and SE
can be written more generally to depend on different covariates,
but we focus on the scenario with shared covariates without loss
of generality. SB can be calculated from external data; for our
application we used age- and sex-matched mortality data from
the US Social Security life tables. We modeled p(x) with logistic
regression and considered Weibull and lognormal parametric
formulations of SE.

Cure Models and Health Economic Evaluation

Economic evaluations of competing interventions often estimate
mean OS or QALYs for each intervention from clinical trials.
However, for clinical trials with heterogeneity due to cured
patients, the survival curves will plateau and not drop to 0 during
the finite follow-up of the trial. If the observed survival is not 0 at
the end of the observation period, the mean value cannot be
estimated without constructing a model. Parametric models such
as the Weibull and lognormal can be used to calculate the mean.
If a population contains a mixture of cured and noncured
patients, the mean survival of the population should be calcu-
lated as the weighted average of the mean survival times of each
of the cured and noncured subpopulations, weighted by the
relative proportions. In the model in Equation 1, the mean OS
of the cured proportion is the mean of the background mortality
(SB), whereas the mean OS for the noncured patients is a function
of both the background mortality (SB) and the disease-related
mortality (SE). In many cancer applications, the mortality from SE
is much higher than the background mortality (SB). The mean of a
random variable with survival function S(t) is equal to

R1
0 SðtÞdt,

and so the mean OS for cured patients is equal to
R1
0 SBðtÞdt and

the mean OS for noncured patients is equal to
R1
0 SBðtÞSEðtÞdt.

Cured and noncured patients will also have different costs
because the cured patients will have long-term follow-up costs
that are associated with long-term surveillance of their cancer
and related medical costs. Similar to the calculation of mean OS,
the mean costs associated with a therapy should be calculated as

the weighted average of the mean costs for cured patients and
the mean costs for noncured patients, weighted by the relative
proportions. One issue in the estimation of mean costs is that
survival times are censored on some study subjects and we do
not observe their total costs. A naive sample average of the total
observed costs can give biased results. To address this issue, we
will use the nonparametric Kaplan-Meier sample average (KMSA)
estimator to calculate mean costs [8]. The KMSA technique
partitions the time period of interest into small intervals and
uses cost histories to determine the mean cost (M) as follows:

M¼
X

i

Si
_
Ci

_
, ð2Þ

where Ci is the average cost over the ith interval conditional on
surviving until the beginning of the interval and Si is the
probability of being alive at the beginning of the ith interval,
estimated using the KMSA estimator. Lin et al. [9] demonstrated
that the Kaplan-Meier estimator is unbiased and consistent as
long as 1) censoring is independent in time and 2) the time
intervals for the cost analysis are sufficiently narrow.

Statistical Methods

Survival was estimated using the Kaplan-Meier method. Para-
metric survival models without a cure fraction were estimated.
Parameters for p(x) and SE(t, x) from Equation 1 were estimated
using the score equations from the log-likelihood in the study by
Lambert [7] (a reference for implementing a version of Equation 1
in the statistical program Stata [StataCorp, College Station, TX]).
Mean survival for noncured patients [equal to

R1
0 SBðtÞSEðtÞdt] was

calculated by evaluating the numerical integral. CIs were calcu-
lated using the bootstrap percentile method on the basis of 10,000
bootstrap replicates.

Ipi Case Study

Ipi is a monoclonal antibody that targets cytotoxic T-lympho-
cyte–associated antigen 4, a protein receptor that downregulates
the immune system to allow cytotoxic T-lymphocytes to con-
tinue to target cancer cells. Ipi has been approved by the United
States for treatment of unresectable stage III and metastatic
melanoma, by Canada for treatment of unresectable stage III
and metastatic melanoma in patients who have failed or failed to
tolerate other therapies, and by the European Union for first-line
and second-line treatment of metastatic melanoma.

We considered patient-level data from a randomized trial in
patients with unresectable stage III and IV melanoma [10]. The
trial randomized patients to three arms: an Ipi arm, an active
control arm with a cancer vaccine derived from the melanosomal
glycoprotein 100 (gp100), and an Ipi þ gp100 arm. In the following
text, we focus attention on the gp100 and Ipi arms for clearer
exposition. In these two arms, the median age was 58 years with
a range of 19 to 91 years, with no significant difference in age
between arms (Wilcoxon P value ¼ 0.998). OS was measured from
the date of randomization to the date of death from any cause,
with patients last known to be alive censored at the date of last
contact. The solid lines in Figure 1 display Kaplan-Meier esti-
mates of OS. The median follow-up of censored patients is 1.8
years. The plateau at the tail of the curve indicates that more
than 15% of the patients on the Ipi arm could be long-term
survivors.

Because the Kaplan-Meier estimates do not drop to 0 at the
end of follow-up, the empirical curve cannot be used to estimate
the mean survival in this patient population. Previous work
considered approaches to estimate the mean OS of this
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