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a b s t r a c t

This paper presents a monolithic formulation frame work combined with an anisotropic mesh adaptation 
for fluid–structure inter action (FSI) applications with complex geometry. The fluid–solid interfaces are 
captured using a level-set method. A new a posteriori error estimate, based on the length distribution tensor 
approach and the associated edge based error analysis, is then used to ensure an accurate capturing of the 
discontin uities at the fluid–solid inter face. It enables to calculate a stretch ing factor providing a new edge 
length distribution, its associated tensor and the corresp onding metric. The optimal stretching factor field is
obtained by solving an optimization problem under the constraint of a fixed number of edges in the mesh.
The presence of the structure will be taken into account by means of an extra stress tensor in the Navier–
Stokes equations. The system is solved using a stabilized three-field, stress, velocity and pressure finite
element (FE) formulation. It consists in the decompo sition for both the velocity and the pressure fields into 
coarse/resolve d scales and fine/unresolved scales and also in the efficient enrichment of the extra 
constraint. We assess the accuracy of the proposed formulation by simulating 2D and 3D time-dependent 
numer ical examples such as: falling disk in a channel, turbulent flows behind an airfoil profile and flow
behind an immers ed vehicle.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction 

Fluid–structure Interaction (FSI) describes a wide variety of
industrial problems arising in engineering, technology and biome- 
chanics. Due to the high complexi ty of these problems, FSI simula- 
tions are nowadays the focus of numerous investigations and 
various approaches are proposed to treat them.

Two main approach es for the simulation of FSI problems are 
still gaining attention lately: partitioned and monolith ic ap- 
proaches. The partitioned approaches allow the use of a specific
solver for each domain. The fluid and the structure equation s are 
alternativel y integrated in time and the interface condition s are 
enforced asynchro nously. The difficulty remains in transferring 
the informat ions between the codes. The coupling between the 
two phases can be enforced using different schemes: weakly or
strongly coupled versions. The former approach manages with just 
one solution of either field per time step but consequentl y lack 
accurate fulfillment of the coupling conditions. The latter requires 
sub-iterations [1–6]. It is accurate and quite efficient but presents 
an inherent instability depending on the ratio of the densities and 

the geometry of the domain [7]. For 3D problems , the numerica l
cost can increase drastically. Alternatively, authors in [8] propose
an immersed particle method able to handle complicated FSI prob- 
lems including cracking and perforation.

Monolithi c methods are still of interest due to their capability to
treat the interaction of the fluid and the structure at the interface 
synchron ously [9–11]. The continuity at the interface is obtained 
naturally and there is no need to enforce it. They impose the use of
an appropriate unique constitutive equation describing both the 
fluid and the solid domains. Interface tracking between the two dif- 
ferent domains can be completed by Immersed Boundary (IB) meth- 
ods [12] where the interface is convected in a Lagrangian way. Other 
methods such as the fictitious domain method [12,13] treat the cou- 
pling between the domains by applying a constrain t across the body 
using a Lagrange multiplier . These constraints may lead to uncou- 
pled physics in the different subdomains of the problem (in the fluid
and the solid, for example), yielding inconsistencies when the sub- 
domains evolve in time. This problem may be solved using the so
called Fixed-mesh ALE formulation introduced in [14] (see also 
[15,16] for applications to fluid–structure interaction problems 
and rigid bodies floating in fluids). Likewise and for more complex 
problems using the ALE formulation, the authors in [17] proposed
a mesh adaptivity procedure for fluid–structure interactio ns capable 
of handling high gradients in the solution, boundary layer effects 
and large structural deformations.
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In this paper, we focus on a monolithic formulation where the 
complete problem is written in a fully Eulerian framewor k and 
the fluid and solid phases are separated by a level-set function.
This was started in [18,19] for simulating the interactions between 
a fluid and fixed solids. The solid was simply treated as a region 
with high viscosity and the mesh near the fixed interfaces was 
refined a priori and before the simulation. The criterion was 
obviously the levelset function.

In this work, we develop a new monolith ic approach that differs 
from the previous developments in two main aspects. The first one 
is related to the way we adapt the mesh in particular for moving 
rigid bodies and the second focuses more on how we treat the solid 
regions in the Navier–Stokes equations. Therefore, we introduce a
new dynamic anisotropic mesh adaptation method to deal prop- 
erly with moving interfaces which still is a key challenge in most 
of the monolithic approaches. Inspired from the work in [20], we
propose an extension of the edge based error estimation to com- 
bine the simultaneous adaptivity to the interface and to the veloc- 
ity field using one simple global vector field. With such an
advantage, it becomes a very useful and practical tool for a wide 
range of FSI problems . The second point concerns more the devel- 
opment of a three-field stabilized finite element method and its 
implementati on aspects for modeling the interaction between 
the fluid (laminar or turbulent) and the rigid bodies (fixed or mov- 
ing). The presence of the structure will be then taken into account 
by means of an extra stress tensor in the Navier–Stokes equation s.

In Sections 2–4, we first consider the level-set function, com- 
monly employed in the simulation of multiphase flows [21], used 
to distinguish the phases. It allows to easily deal with very complex 
geometries, large structural deformation s and free movements of
the structure within a flow domain. However, the level-set inter- 
sects the elements arbitrarily and lacks the ability to reproduce 
the interfaces of complex geometries (i.e. sharp corners). Therefore,
we combine it with anisotropic mesh adaptatio n. An a posteriori 
edge based spatial error indicator relying on the length distribution 
tensor approach is presented in section 3. The anisotropic adapta- 
tion involves building a mesh based on a metric map. It provides 
both the size and the stretching of elements in a very condensed 
information data. Working on a nodal based metric, an anisotropi c
mesh adaptation procedure is obtained under the constraint of a
fixed number of nodes. With such an advantage, it becomes a very 
useful and practical numerica l tool. Such an algorithm allows the 
creation of extremely stretched elements along the interface,
which is an important requiremen t for FSI problems with high 
density ratios.

In Section 4, we then present the development of the FE solver.
The rigid immersed body is treated using the Navier–Stokes solver 
under constraints of imposing the nullity of the deformation s by
means of a Lagrange multiplier. The system is solved using a new 
Variational Multisca le FE method. Thus we propose to extend the 
decompositi on for both the velocity and the pressure fields into 
coarse/resolve d scales and fine/unresolved scales, needed to deal 
with convection dominated problems and pressure instabilities,
with an efficient enrichment of the extra constrain t. This choice 
of decomposition is shown to be favorable for simulating flows
at high Reynolds number and to remove spurious oscillations at
the interface due to the high discontinuity in the material proper- 
ties. We retain in this work the advantages of using the P1 finite
elements approximat ion regarding the accuracy and the computa- 
tional cost, especiall y for 3D real applications.

The capability of the developed finite element method in
handling extremely stretched elements and in producing very sat- 
isfactory results is highlighted in Section 5 through different 
numerical tests. We show that the proposed anisotropic meshing 
technique is well suited for these fluid–structure interaction prob- 
lems and could be embedded into different FSI techniques such as

[22–24]. This is due to the fact that the latter method takes into 
account multicomp onent fields simultaneou sly (tensors, vectors,
scalars) characterizi ng the structure and the physics of the 
problem. For instance it includes the velocity norm, the velocity 
components and the Level-Set function combined into one single 
metric field. In Section 6, we give our concluding remarks.

2. Construction of an anisotropic mesh 

In this section, we retrace the main steps of the adaptive proce- 
dure used to immerse and to represent different complex geome- 
tries inside a unique mesh. First we compute the signed distance 
function (level-set) of a given geometry to each node of the mesh,
then we refine anisotropical ly the mesh at the interface and finally
we mix and attribute the physical properties of each domain using 
appropriate laws. This procedure is repeated iteratively for moving 
solids.

2.1. Level-set function 

A signed distance function of an interface Cim is used to localize 
the interface of the immerse d body and initialize the desirable 
propertie s on both sides of the latter. At any point x of the compu- 
tational domain X, the level-set function aim corresponds to the 
signed distance from Cim. In turn, the interface Cim is given by
the iso-zero of the function aim:

aimðxÞ ¼ �dðx;CimÞ; x 2 X;

Cim ¼ fx;aimðxÞ ¼ 0g:

�
ð1Þ

In this paper, a sign convention is used: aim P 0 inside the solid do- 
main defined by the interface Cim and aim < 0 outside this domain.
Further details about the algorithm used to compute the distance 
are available in [25]. It is also possible to use functions smoothe r
than d(x,Cim) far from Cim (see for example [26]).

2.2. Edge based error estimation 

An a posteriori error estimate based on the length distribut ion 
tensor approach and the associated edge based error analysis 
[20] is presented. It enables to calculate a stretching factor provid- 
ing a new edge length distribution , its associated tensor and the 
correspondi ng metric. The optimal stretchin g factor field is ob- 
tained by solving an optimizati on problem under the constraint 
of a fixed number of edges in the mesh. In this work, we emphasis 
the applicati on of this new technique to multi-doma in problems.
Therefore, for addressing a high contrast in the physical parame- 
ters, we propose an extension of the a posteriori estimation. It com- 
bines the simultaneous adaptivity to the level-set scalar field and 
to the velocity field without increasing the complexity of the com- 
putation or intersecting different metrics. Using this approach , the 
adaptivity will also focus on the change of direction rather than the 
intensity of the velocity. This is clearly shown behind the obstacle 
in Fig. 1, whereas the adaptatio n on the level-set function renders 
extremely stretched elements along the fluid–solid interface. With 
such a method, we can provide a very useful and practical tool for 
the simulation of complex FSI problems. In the following subsec- 
tions, details of the adaptivity approach will be discussed.

We consider a variable u 2 C2ðXÞ ¼ V and Vh a simple P1 finite
element approximation space: Vh ¼ fwh 2 C0ðXÞ; whjK 2 P1ðKÞ;
K 2 Kgwhere X ¼

S
K2KK and K is a simplex (segment, triangle, tet- 

rahedron , . . .).
We define X ¼ fXi 2 Rd; i ¼ 1; . . . ;Ng as the set of nodes of the 

mesh and we denote by Ui the nodal value of u at Xi and we let Ph

be the Lagrange interpolation operator from V to Vh such that:
Phu(Xi) = u(Xi) = Ui, "i = 1, . . . ,N. As shown in Fig. 2, we denote 
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