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a b s t r a c t

Copeland and Moon’s experimental results for a long pipe conveying fluid in the presence of a relatively 
large end-mass have displayed some truly fascinating dynamical behavior. Numerical studies, on the 
other hand, have all dealt with shorter pipes and smaller end-masses, mainly because the numerical 
convergence of the theoretical results for long pipes with large end-masses is problematic. In this paper,
numer ical results are presented for Copeland and Moon’s system parameters, reproducing some of the 
rich dynamics they obtained, including coupled planar and pendular oscillations, planar oscillations 
rotating through a finite angle, and planar motions rotating clockwise or counter-clo ckwise.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction 

The first studies on cantilevered pipes conveying fluid with at- 
tached masses were undertaken using linear models [1]. This linear 
work was later continued by Jendrzejczy k and Chen [2] for a pipe 
with a mass attached at the free end (here referred to as an
‘‘end-mass’’) and by Sugiyama et al. [3]. These studies showed that 
the additional mass(es) could either stabilize or destabilize the sys- 
tem vis-à-vis the plain pipe, depending on the system paramete rs
and location of the additional mass(es) [see [4], Section 3.6.3].

Nonlinear studies of a pipe with an end-mass started mainly 
after nonlinear equations for a plain pipe (i.e., without additional 
masses or springs attached to the pipe) were derived by several 
researchers for planar (2-D) motion (e.g., [5,6]) and for three- 
dimensional (3-D) motion (e.g., [7–9]). A plain pipe loses stability 
by a Hopf bifurcation at a critical flow velocity and undergoes limit 
cycle oscillations for larger flow velocities. No further bifurcations 
are observed for increasing flow.

The first, very interesting nonlinear study on pipes with an end- 
mass was the experimental work by Copeland and Moon [10]. The 
experiments were conducted with particularly long, vertically 
hanging, cantilever ed elastomer pipes, fitted at the free end with 
end-masses of different sizes and showed extremely rich dynami- 
cal behavior, as summarized in Fig. 1, where C = me/[(M + m)L] is a
dimensionle ss end-mass paramete r, with me being the end-mass,
M the mass of the fluid per unit length, m that of the pipe per unit 

length, and L the pipe length; ug = U/(gL)1/2 is the dimensionless 
flow velocity used by Copeland and Moon. In addition to planar 
and orbital (rotary) motions, an extraordinary array of geometri- 
cally more complex motions was discovered. In all cases with an
end-mass , for sufficiently high flow velocity the motions became 
chaotic. In at least some cases, the quasiperi odic route to chaos 
was found to be followed . In the analytica l part of the study, which 
was not wholly successful [13], the long vertical pipes were mod- 
eled as hanging strings.

Païdoussis and Semler [12] studied both theoretical ly and 
experime ntally the dynamics of more modestly long hanging elas- 
tomer cantilevers. In these experime nts, the end-mass parameters 
were considerabl y smaller than in Copeland and Moon’s experi- 
ments. Interesting observations were made in this case also. Planar 
flutter was followed by a secondary bifurcation as the flow velocity 
was increased, which could be identified with a sudden and sub- 
stantial increase in the frequency, accompani ed by a peculiar mode 
of oscillation with a seemingly stationar y node around the pipe 
mid-leng th. For higher flow velocities, the motion eventually be- 
came chaotic and three-dimens ional. Païdoussis and Semler’s 
[12] experimental results were compared to the theoretical ones,
obtained with their 2-D model. The Hopf and secondar y bifurca- 
tions were reasonably well predicted, as was the transition to
chaos. See [4, Section 5.8.3] for an extensive review of nonlinear 
work on pipes with an end-mass.

A 3-D version of the nonlinear equations of motion of Semler 
et al. [6] has been derived by Wadham-Gagn on et al. [14].
These equations have been used successfully [15] to study the 
three-dim ensional behavior of a pipe with an end-mass and with 
physical properties of the pipe as in Païdoussis and Semler’s 
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experiments [12]. In the same paper, it is shown that convergence of
the 3-D theoretical results for cases with large gravitational param- 
eter (c; proportional to the length cubed) and end-mass parameter 
(C) is not easily obtainab le. In the present paper, the 3-D study of
pipes with end-mass es is extended to the range of the pipes used 
in Copeland and Moon’s experiments [10]. While there might not 
be any direct application of exactly the problem studied here, there 
are various engineering applications in which dynamic flow-
induced instabilities are observed. There is currently a lot of interest 
in the dynamics of very long (kilometer-long) pipes used in solution- 
mined salt caverns, used for underground storage of hydrocarbons 
[11]. The fundamenta l knowled ge gained from studies such as the 
one discussed in this paper can help in understand ing similar 
instabilities in other, sometimes more complicated, systems.

2. Theoretical model 

The equations of motion have been derived by Wadham- 
Gagnon et al. [14] for a general case where there are some interme- 
diate springs as well as an end-mass attached to the pipe. For the 
present study (Fig. 2), all terms related to these springs have been 
deleted. In the derivation, the Lagrangian coordinates (X0,Y0,Z0),
which label specific particles at the original equilibrium state of
the pipe, are related to the Eulerian coordinates (x,y,z) through 
the displacemen t (u,v,w) of any material point as

x ¼ X0 þ u; y ¼ Y0 þ v; z ¼ Z0 þw: ð1Þ

A curviline ar coordinate s, along the length of the pipe is intro- 
duced. The pipe is assumed to be inextensib le, which leads to the 
following relation:
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To derive the equation of motion, a modified version of Hamilto n’s 
principle is used, where the right-hand side accoun ts for the energy 
gain or loss at the free end of the pipe [16,17]:
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in which, L = Tp + Tp � Vp � Vf is the Lagrangian of the system ; T and V
refer to the kinetic and potential energy, respective ly; subscripts p
and f refer to the pipe and the fluid, respective ly; dW is the virtual 
work due to the forces not included in the Lagrangian, and the 
right-ha nd side is the virtua l momentum transport at the end of
the pipe; r is a position vector, and s is the tangent vector at any 
point of the pipe:

r ¼ ðsþ uÞiþ vjþwk; ð4Þ

s ¼ 1þ @u
@s

� �
iþ @v

@s
jþ @w

@s
k: ð5Þ

In the derivatio n, it is assumed that the displace ments in the y and z
directions are of order e and the nonlinea r terms up to the third 

Fig. 1. Transition from equilibrium to chaos for 3-D motions of the system for various end-masses. Top: the ranges of various oscillatory states in terms of increasing ug for 
different end-masses, C. S: stationary pipe; PL: planar oscillation; CW: clockwise rotating motion; CCW: counter-clockwise rotating motion; PL, CW: clockwise rotating 
planar oscillation; PL, CCW: counter-clockwise rotating planar oscillation; PL(R): planar oscillation rotating through a finite angle; PL, P: coupled planar and pendular 
oscillation; PL, P(R): coupled oscillation and pendular oscillation rotating through a finite angle; N: nutation; CH: chaos. Bottom: sketches of various periodic motions. (a) PL;
(b) CCW; (c) PL(R); (d) PL, P; (e) N [10].
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