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a b s t r a c t

We present a mathematical model and simulation method to compute the colonial dynamics of micro-
swimmers that interact directly and through the fluid they are suspended in. The model uses the stress
generated by each self-motile particle for long-range interactions and includes short-range steric effects
between particles. The time-step computational cost is O(NlogN + M), with N the total number of mesh
points, and M the number of swimmers. This fast method enables us to efficiently simulate many thou-
sands of interacting self-propelling particles in three dimensions and with background flows. We show
examples of collective behavior in suspensions of ‘‘pusher’’ and ‘‘puller’’ micro-swimmers.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction and motivation

In recent years many experiments and studies have focused on
the collective dynamics of self-propelling or types of ‘‘active’’ mi-
cro-particles and how they interact with the fluid they live in
(see reviews [25,29,32]). The study of a single microorganism’s
locomotion is an interesting question by itself, as many employ
unusual strategies to propel themselves in an environment where
inertia is negligible and the viscous effects dominate. The motion
of a ‘‘suspended’’ swimming microorganism disturbs the surround-
ing fluid, and as such it affects the other microorganisms in it, in
effect making it possible for the micro-swimmer to interact with
the other through it. Capturing the interactions between the organ-
ism and the fluid is challenging by itself. In a suspension or many
such ‘‘active’’ particles interesting dynamics emerge, such as mac-
roscopic organization and complex flows in which the transport
and mixing properties are altered by the micro-swimmers’ collec-
tive motion. In experiments it is observed that colonies of Bacillus
subtilis or Escherichia coli organize into large-scale structures, and
the disturbed fluid flow exhibits vortices and jets with speeds
much larger than the swimming speed of any individual bacterium
[5,9]. These structures emerge as a result of the interactions be-
tween the micro-swimmers, direct or via the surrounding fluid
flow, and they depend on the type of swimmer involved as well
as the population concentration. The structures are complex and

can be influenced by many things, such as internal or external
chemical cues, temperature changes, gravity, light, boundaries, etc.

Direct simulations of suspensions of micro-swimmers that cap-
ture physically correct individual motions and interactions are
desirable in order to study and understand the underlying mecha-
nisms that drive the collective dynamics, but such simulations are
difficult because of the very large number of swimmers that have
to be individually traced. Numerical simulations that capture par-
ticle–particle and particle–fluid interactions at various levels of
approximations have been undertaken, e.g. boundary integral
methods [31] for two ellipsoidal swimmers [23], simple dumbell
models [15,16] or slender-body models for far-field interactions
[33], Stokesian dynamics of ‘‘squirmers’’ that propel by a surface
slip velocity [19,20,11], immersed boundary method [7,18] or the
method of regularized Stokeslets for non-interacting swimmers
[1], etc. These simulations can often capture qualitative features
observed in experiments, e.g. the large-scale flows and enhanced
passive diffusion, and often elucidate details of the interactions be-
tween two or more micro-swimmers. The difficulties are however
twofold: modeling of the physics and computation. For example,
modeling the dynamics of slender self-propelling particles in slow
viscous flow using a boundary integral, e.g. [23], yields good reso-
lution and understanding of the flow field close to the body, but lo-
cal refining is needed when two swimmers get very close, making
the method expensive for simulations of many particles. Capturing
the direct interaction of the particles in this case is desirable, but it
comes at a high computational cost even with modern computa-
tional tools. Other methods [33,35] employ far-field interactions
only, with the particles feeling the collectively-generated flow,
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but not the neighbors, and as such can overlap and cross with
each-other. Typically most direct simulations of suspensions are
limited with regard to the number of swimmers, from a few dozen
in [11] to a few thousand swimmers even if the local drag approx-
imation (far-field interaction via fluid) is used [35].

It is thus desirable to design a numerical method that captures
the physical dynamics a large number of micro-swimmers that
interact with each other and with the macroscopic fluid flow, but
at a manageable computational cost. To do this we use what is
known about the swimming micro-mechanics of a slender motile
particle, the far-field fluid flow it generates and how it interacts
with nearby swimmers. Each swimmer self-propels, is advected
and rotated by the macroscopic flow, but also the disturbance flow
it generates due to locomotion. The swimmers in this model inter-
act directly with the neighbors, and also through the fluid flow:
hence the interactions are both steric and hydrodynamic. The loco-
motion-induced far-field flow, which to the leading order is a
force-dipole or stresslet, captures well what is observed in experi-
ments of bacteria like E. coli or green-algae Chlamydomonas rein-
hardtii [10]. In low Reynolds number flows the contributions of
all the micro-swimmers to the flow can be ‘‘added up’’ to result
in a collectively-generated flow field. By stitching together the ana-
lytically-obtained leading-order forms in the dynamics of the mi-
cro-swimmers, we create a hybrid simulation method that
qualitatively captures the suspension dynamics observed in
more-involved simulation methods, but with less computational
cost, the ability to trace a significantly larger number of swimmers,
and the versatility to add to a variety of other types of interactions,
particles, boundaries, etc.

In this study we present a mathematical model based on the
mechanics of a motile slender particle in a low Reynolds number
flow, and also the pair interactions that result from closeness and
collisions of two such particles. We describe how to calculate the
extra stress generated by many such self-propelling particles and
how that can be included in the fluid equations. The numerical
method employed uses some of the framework of the immersed
boundary method for fluid–structure interactions [30]. We discuss
how the model captures the dynamics of one or two interacting
self-motile particles, and how this depends on the type of the
swimmer propulsion mechanism. The collective behavior of a very
large number of micro-swimmers is shown for a variety of swim-
mer-types at significant swimmer volume fractions or concentra-
tions. We also present one example of many interacting self-
propelling particles in a large vortical flow to illustrate the effects
of coupling the swimmer dynamics to an external flows much lar-
ger in scale and speed than the individual swimmer. In the end, we
briefly discuss how the method can be extended to account for
other types of interactions between micro-swimmers or other
types of active particles.

2. Mathematical model

2.1. Idealized swimmer model

We consider a slender motile non-inertial object that is im-
mersed in a Newtonian Stokes fluid. The simplest and most popu-
lar far-field model of slender body theory [3,24,22] is the non-local
drag approximation, which is a leading-order dynamics of the
swimming dynamics of a Stokesian object. Denoting the object
centerline by Y(s, t) with s the arc-length variable, the slender-body
model is

8pl½ _Yðs; tÞ � Uðs; tÞ� ¼ � logðe�2Þ Iþ YsY
T
s

� �
F: ð1Þ

Here l is the surrounding fluid viscosity, Ys is tangential to the cen-
ter-line, U(s, t) is the fluid velocity at the centerline, F the force per

unit length exerted by the body onto the fluid. � is the slenderness
or aspect ratio. The dynamics is asymptotically accurate to
O(�2 log�).

Let the object to be a self-propelling rigid rod of length l in a lin-
earized (incompressible) fluid flow u(x). The rod can be described
by its center of mass Xc and orientation P as Y(s, t) = Xc(t) + sP(t) for
�l/2 < s < l/2 and jPj = 1. If the rod has a constant propulsive tan-
gential stress posed on one half of its length and a no-slip condition
be imposed on the other half [17], one obtains a basic model for an
idealized version of a ‘‘pusher’’ swimmer like a bacterium E. coli or
a ‘‘puller’’ swimmer like a green algae C. reinhardtii. These type of
idealized swimmers are extensively used in studies of particle
models [33] and are the basis of many continuum theories [34].
A ‘‘pusher’’ swimmer generates the propelling thrust through the
trailing flagella, hence in our model the propulsive stress is posed
on the lower particle half, as shown in Fig. 1. If the tangential stress
is posed on the upper half of the swimmer length, then the particle
would an idealized version of a ‘‘puller’’ swimmer, e.g. green algae
C. reinhardtii which self-propels by pulling its body forth by its
front two flagella.

Following the procedure outlined in [17] with zero total force
and torque conditions on the swimmer, we can solve for the force
F(s) exerted by the swimmer on the fluid. The swimmer dynamics
can be then be encapsulated in the dynamics of its center of mass
Xc and propulsion direction P as

_Xc ¼ U0Pþ uðXcÞ; ð2Þ
_P ¼ ðI� PPTÞruðXcÞP: ð3Þ

Here U0 is the constant propulsion speed of the swimmer that de-
pends on the propulsive tangential stress, viscosity, and particle as-
pect ratio �. The first Eq. (2) describes the dynamics of the center of
mass and tells how the particle self-propels and is advected by the
fluid flow that is evaluated at the center of mass. The second Eq. (3)
is Jeffrey’s Equation [21] that describes how a slender rod is rotated
by the fluid flow u evaluated at its center of mass. In our model we
non-dimensionalize by the swimmer length and propulsion speed,
which sets l = 1 and U0 = 1.

If an external flow v(x, t) is present, then the leading order equa-
tions of motion can include it as

_Xc ¼ U0Pþ uðXcÞ þ vðXcÞ; ð4Þ
_P ¼ ðI� PPTÞ½ruðXcÞ þ rvðXcÞ�P: ð5Þ

2.2. Pair interactions

Direct interactions between the micro-swimmers can be in-
cluded in their dynamics so that they do not overlap or cross. These
interactions are commonly referred to as excluded volume or steric.
Borrowing from the field of molecular dynamics, we add short-
range repulsive forces between the swimmers via an anisotropic
potential by considering the swimmers as soft sphero-cylinders or
slender ellipsoidal particles. Commonly used potentials for pair-
wise interactions of such anisotropic particles are of the Gay–Berne
[13]-type Ue(rij,Pi,Pj) where rij = Xci � Xcj is the distance vector be-
tween the two particles’ centers of mass and Pi, Pj their swimming
directions. The interaction activates only once the particles are
within 21/6 � 1.12 body-lengths away of each-other. The force and
torque exerted on the particle i by the particle j are respectively

Fe
ij ¼ �rrij

Ueðrij;Pi;PjÞ; ð6Þ

Te
ij ¼ �Pi �rPi

Ueðrij;Pi;PjÞ: ð7Þ

In this case we consider the pair of particles as force-free and
torque-free. By going through the calculation on the previous sec-
tion (or following the procedure in [17]), but with total force Fe

ij and
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