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a b s t r a c t

In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for
flow problems with a moving interface. The work is built on the AMR method developed for two-dimen-
sional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515–527). The interface is captured by
the zero level set of a Lipschitz continuous function u(x,y, t). Our adaptive mesh refinement is built
within a small band of ju(x,y, t)j 6 d with finer Cartesian meshes. The AMR-IIM is validated for Stokes
and Navier–Stokes equations with exact solutions, moving interfaces driven by the surface tension,
and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this
paper for the level set method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we develop an adaptive mesh refinement (AMR)
technique for the immersed interface method (IIM) for elliptic
interface problems with discontinuous coefficients across arbitrary
interfaces, Stokes and Navier–Stokes equations with a fixed or
moving interface.

Advantages using uniform Cartesian grids include simplicity,
robustness, and no additional cost in the grid generation for free
boundary and moving interface problems. Another consideration
is that many fast solvers on uniform grids can be employed. How-
ever, uniform meshes may not be efficient or sufficient for some
problems that require high resolutions in some parts of the solu-
tion domain, particularly in the neighborhood of the interface,
which is main interest for many applications. In order to capture
the fine structures of the interface, the AMR is natural choice.

Local grid refinement may be effective for interface problems
since (1) often we are mainly interested in the solution near or
on the interface; (2) the solution away from the interface is often
smooth enough and therefore does not require a fine grid to re-
solve it; (3) often an AMR can provide more accurate gradient com-
putation near the interface which is important for many
applications. There are a few adaptive techniques developed for
the Immersed Boundary (IB) method using a Lagrangian formula-

tion, see for example [1,3,4,15]; and using the zero level set repre-
sentation of a Lipschitz continuous function, see for example
[13,17,18].

Many AMR techniques use the information from a-prior or a-
posterior error estimate based on the solution to determine where
and when to employ a local mesh refinement technique without
explicitly using the interface information. However, if the location
of the interface is known in advance, then using the priori informa-
tion (known interface) to guide the AMR process may result in
more efficient methods.

There is little research on AMR for IIM. In [12], we developed
AMR techniques for IB and IIM for elliptic interface problems with
a fixed and circular interface. Since then, the AMR-IIM has been ex-
tended to problems with general interfaces, which is also reported
in this paper. Nevertheless, the focus of this paper is on the AMR-
IIM for Stokes and Navier–Stokes equations with fixed and moving
interfaces. Since our solver for the Stokes and Navier–Stokes equa-
tions is composed of solving several Helmoltz/Poisson equations,
for which we can use the AMR-IIM that we have developed for
elliptic interface problems. It is certainly non-trivial to extend
the AMR-IIM for Poisson equations to Stokes and Navier–Stokes
equations with interfaces. In this manuscript, we use the zero level
set of a Liptschitz continuous function to represent the moving
interface and the level set method to evolve the moving interface.

The rest of paper is organized as follows. In the next section, we
review the AMR-IIM for elliptic interface problems and present
some examples. In Section 3, we describe the AMR-IIM for Stokes
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flows with a moving interface and present some examples. In Sec-
tion 4, we present the AMR-IIM for the Navier–Stokes equations
with a moving interface. We conclude and make some acknowl-
edgments in the last section.

2. AMR-IIM for elliptic interface problems

In this section, we review the AMR-IIM developed in [12] for
elliptic interface problems of the form

r � ðbruÞ ¼ f ðxÞ; x 2 R; ð1Þ

½u�C ¼ wðsÞ; @u
@n

� �
C

¼ vðsÞ; ð2Þ

with a prescribed boundary condition of u(x) along @ R, where R is a
rectangular domain, C 2 C2 is a smooth interface that can be param-
eterized by a one-dimensional variable s, say the arc-length, within
the domain R; w(s) 2 C2 and v(s) 2 C1 are two functions defined
along the interface C. Note that, when w(s) = 0, then the problem
can be written as

r � ðbruÞ ¼ f ðxÞ þ
Z

C
vðXðsÞÞdðx� XðsÞÞds; x 2 R; ð3Þ

where X(s) is a point on the interface C. The results of the AMR-IIM
in [12] are only for simple geometries such as circles/ellipses and
the PDEs with constant coefficients. Now we have generalized the
AMR-IIM to more general interfaces and more general elliptic inter-
face problems. Below, we first review how to generate the AMR
mesh using a level set function.

2.1. Adaptive mesh generation

We assume that the interface problem is defined on a rectangu-
lar domain X = [a,b] � [c,d]. We start with a coarse Cartesian grid,
xi = a + ih, yj = c + jh, i = 0,1, . . . ,m, j = 0,1, . . . ,n. The interface C is
implicitly represented by the zero level set of a Lipschitz continu-
ous function u(x,y):

C ¼ ðx; yÞ; uðx; yÞ ¼ 0
n o

: ð4Þ

In the discrete case, u(x,y) is defined at grid points as u(xi,yj). Often
u(x,y) is the signed distance function from C.

To generate a finer mesh around interface C, we first select par-
ent points within a band of the interface according to

juðx; yÞj 6 kh; ð5Þ

where k is a control coefficient to adjust the width of refinement
band. The grid points xij = (xi,yj) within the band are selected as par-
ents. We build a refined mesh with a new mesh resolution h/r (r is
refinement ratio, r = 2 or 4, for example) within the square: jx � xij
6 h and jy � yjj 6 h. Generating the refined square for every parent
points yields a refined region around the interface. Its width is flex-
ibly controlled by k. Fig. 1 shows an example of such a refinement
mesh around a circular interface. If a finer mesh is needed, we
can select from the second level grid points by:

juðx; yÞj 6 kh=r; ð6Þ

where h/r is the resolution of the second level refined mesh. We can
repeat the process to get finer and finer meshes.

We described in [12] how to index grid points from multiple
levels and store the related information by an efficient data
structure.

2.2. Finite difference schemes on adaptive meshes

We explain the finite difference (FD) scheme for solving an
elliptic interface problem b(uxx + uyy) = f at different mesh levels
since our solver for Stokes and Navier–Stokes equations is com-
posed of solving several elliptic interface problems (Poisson and
Helmholtz equations). For our applications, for example, the Stokes
and Navier–Stokes equations with a moving interface, we know
the jump conditions [u] = w and [bun] = v along the interface C gi-
ven as the zero level set of u(x,y) = 0.

We list finite difference equations at different types of grid
points below, see Fig. 2, for an example, which can be considered
as a zoom-in of one particular part in the AMR mesh in Fig. 1.

� Irregular grid points such as the two labeled as 10 and 16. A grid
point (xi,yj) is called irregular if the interface cuts through the
central 5-point stencil centered at (xi,yj). Using the level set
function, a grid point (xi,yj) is irregular if umax

ij umin
ij 6 0, where

umax
ij ¼max ui�1;j;uiþ1;j;uij;ui;j�1;ui;jþ1

n o
; ð7Þ

umin
ij ¼min ui�1;j;uiþ1;j;uij;ui;j�1;ui;jþ1

n o
: ð8Þ

Irregular grid points must be in the finest mesh. For irregular grid
points, we use the immersed interface method to get the finite dif-

Fig. 1. Adaptive mesh around a circular interface (red solid). Parent grid points
(starred) are selected within band juijj = ju(xi,yj)j 6 h (red dashed). Then, finer level
square meshes are generated from parent grid points. The refinement ratio r = 2,
and control coefficient k = 1 for refinement width. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 2. A part of an adaptive mesh that includes the fine level mesh around an
interface (red curve) and the coarse mesh. Hanging nodes 8, 12, 19 lie on border of
two mesh levels. Ghost points g1 and g2 are used to derive the finite difference
equation for node 12. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

250 Z. Li, P. Song / Computers and Structures 122 (2013) 249–258



Download	English	Version:

https://daneshyari.com/en/article/510501

Download	Persian	Version:

https://daneshyari.com/article/510501

Daneshyari.com

https://daneshyari.com/en/article/510501
https://daneshyari.com/article/510501
https://daneshyari.com/

