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a b s t r a c t

The natural frequency of the flapwise bending vibration, and coupled lagwise bending and axial vibration
is investigated for the rotating beam. A method based on the power series solution is proposed to solve
the natural frequency of very slender rotating beam at high angular velocity. The rotating beam is sub-
divided into several equal segments. The governing equations of each segment are solved by a power ser-
ies. Numerical examples are studied to demonstrate the accuracy and efficiency of the proposed method.
The effect of Coriolis force, angular velocity, and slenderness ratio on the natural frequency of rotating
beams is investigated.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Rotating beams are often used as a simple model for propellers,
turbine blades, and satellite booms. The free vibration frequencies
of rotating beams have been extensively studied [1–19]. Rotating
beam differs from a non-rotating beam in having additional cen-
trifugal force and Coriolis effects on its dynamics. The lagwise
bending and axial vibration are coupled due to the Coriolis effects
[8,15,18]. However, most studies neglected the Coriolis effects in
the literature. It is well known that the beam sustains a steady
state axial deformations (time-independent displacement) induced
by constant rotation [20]. For the rotating uniform beam as shown
in Fig. 1, the maximum steady axial strain occurs at the root of the
beam and may be expressed as [15] emax ¼ �k2ðR=Lþ 0:5Þ, where
�k ¼ XL

ffiffiffiffiffiffiffiffiffi
q=E

p
is a dimensionless angular velocity, R is the radius

of the hub, L, q, and E are the length, density, and Young’s modulus
of the beam, respectively, X is the angular velocity of the hub. In
practice, rotating structures are designed to operate in the elastic
range of the materials. Thus, the allowable value of the maximum
steady axial strain for the rotating beam should be smaller than the
yield strain, which is much smaller than unity for most engineering
material. In this sense, if the maximum steady axial strain is close
to the yield strain, the corresponding angular velocity may be
called high angular velocity. However, as mentioned in [15], the
magnitudes of the steady state axial strain induced by the centrif-
ugal force and the corresponding angular velocity are not checked
in most literature. The dimensionless angular velocity used in most
literature is �g�k, where �g is the slenderness ratio of the beam. The

difference of the maximum steady axial strains corresponding to
the same value of �g�k may be remarked for rotating beams with dif-
ferent slenderness ratio. Thus, the maximum steady axial strains
corresponding to some angular velocity considered in many litera-
tures are even larger than unity for rotating beam with small slen-
derness ratio, but are much smaller than the yield strain of most
engineering material for very slender beam. In this study, if the
maximum steady axial strain is much smaller than the yield strain,
the corresponding angular velocity is regarded as low angular
velocity. To the authors’ knowledge, the study of the natural fre-
quency for very slender rotating beam at high angular velocity is
rather rare in the literature. The objective of this paper is to inves-
tigate the natural frequencies of the flapwise bending vibration,
and coupled lagwise bending and axial vibration for very slender
rotating Euler beam at high angular velocity using power series
solution. However, the rotating beams with different slenderness
ratio at different angular velocities are also investigated.

A number of methods based on the power series solution have
been developed for determination of natural frequencies and mode
shapes of rotating beams [2,6,9–19]. However, only the uncoupled
bending vibration was considered in most methods based on the
power series solution. It was asserted that only one single segment
is needed for power series solution to obtain any modal frequency
or mode shape for uniform beams or uniformly tapered beams in
[17]. A similar statement was given in [18]. However, no results
for slender rotation beams at high angular velocity were given in
[17,18]. The assertion given in [17,18] may be correct if a computer
can retain infinite number of significant digits to represent the re-
sult of an operation. However, any computer can only retain a fi-
nite number of significant digits to represent the result of an
operation. The accuracy of the calculated natural frequency
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depends on the precision with which the computing facility oper-
ates, and a great number of terms in the power series solution does
not necessarily result in a more accurate solution [12]. The authors
use the power series method proposed in [15] and double precision
computation to calculate the natural frequencies for slender rotat-
ing beams at high angular velocity. It is found that the rate of con-
vergence of the power series solution is slower at higher angular
velocity and the computation fail to converge when the angular
velocity is higher than some value. In [12], it is found that to calcu-
late the frequencies for rotating beam at high centrifugal tension
using one segment and quadruple precision computation failed
for some case due to arithmetic overflow. The failure may be
attributable to the accuracy lost caused by the insufficient preci-
sion used in computation. It seems that the rate of convergence
of the power series solution decreases and the degree of accuracy
lost of the power series solution in computation increases with
the increase of the dimensionless angular velocity �k. The power
series solution using one segment with quadruple precision com-
putation may be still not enough to get the frequencies for slender
rotating beams at very high angular velocity. However, using qua-
druple or higher precision computation may be impractical. To
alleviate the aforementioned numerical difficulties, in this study,
a practical method based on the power series solution is proposed
to solve the natural frequency of slender rotating beam at very
high angular velocity.

In this study, the equations of motion for rotating Euler beam
are derived by the d’Alembert principle and the virtual work prin-

ciple. In order to capture all inertia effect and coupling between
extensional and flexural deformation, the consistent linearization
[21–23] of the fully geometrically non-linear beam theory
[22,23] is used in the derivation. The governing equations for linear
vibration of rotating beam are two coupled linear ordinary differ-
ential equations with variable coefficients. The rotating beam is
subdivided into several equal segments. The solution of each seg-
ment is expressed as a power series with six independent coeffi-
cients. Substituting the power series solution of each segment
into the corresponding boundary conditions at two end nodes of
the rotating beam and the continuity conditions at common node
between two adjacent segments, a set of homogeneous equations
can be obtained. The natural frequencies may be determined by
solving the homogeneous equations using the bisection method.

The dimensionless angular velocity corresponding to each seg-
ment is �k=N, where N is the number of segment. Subdividing the
rotating beam into more segments can make the value of dimen-
sionless angular velocity in the power series solution smaller. We
believe that when the value of dimensionless angular velocity in
the power series solution decrease, the rate of convergence of
power series solution will increase, the accuracy lost in computa-
tion will decrease, and double precision computation will be suffi-
cient to obtain natural frequency with high accuracy for slender
rotating beams at very high angular velocity. This belief will be
examined through numerical examples in the paper. Numerical
examples are studied to investigate the effect of Coriolis force, ro-
tary inertia, angular velocity, hub radius and slenderness ratio on
the natural frequency of rotating beams. The frequency veering
phenomenon [24] induced by the Coriolis force and the centrifugal
force are also investigated.

2. Formulation

2.1. Description of problem

Consider a uniform Euler beam of length L rigidly mounted on
the periphery of rigid hub with radius R rotating about its axis fixed
in space at a constant angular velocity X as shown in Fig. 1. The
deformation displacements of the beam are defined in a rotating
rectangular Cartesian coordinate system which is rigidly tied to
the hub. The origin of this coordinate system is chosen to be the
intersection of the centroid axes of the hub and the undeformed
beam. The X1 axis is chosen to coincide with the centroid axis of
the undeformed beam, and the X2 and X3 axes are chosen to be

Nomenclature

A cross-section area of rotating beam
E Young’s modulus
F1 force in X1 direction
F3 force in X3 direction
I principal second moment of cross-section area
k �k=N
�k dimensionless angular velocity of the hub
K K=N
K dimensionless natural frequency of rotating beam
l length of each segment
L length of rotating beam
M moment about negative X2 axis
N number of segments
�r dimensionless radius of rotating hub
r position vector
€r second time derivative of r
R radius of the hub

t time
u time dependent infinitesimal displacements in X1 direc-

tion
U dimensionless u
us steady state axial deformations
w time dependent infinitesimal displacements in X3 direc-

tion
W dimensionless w
b setting angle of rotating beam
e axial strain
emax maximum steady axial strain of rotating beam
g �g=N
�g slenderness ratio of rotating beam
h rotation of beam cross-section
x natural frequency of rotating beam
X angular velocity of hub
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Fig. 1. A rotating Euler beam.
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