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a b s t r a c t

Harmonic balance (HB) methods allow for rapid computation of time-periodic solutions for nonlinear
dynamical systems. We present a filtered high dimensional harmonic balance (HDHB) approach, which
operates in the time domain, and provide a framework for implementation into an existing finite element
solver. To demonstrate its capabilities, the method is used to solve a set of nonlinear structural dynamics
problems related to the field of flapping flight. For each example, the HDHB approach produces accurate
steady-state solutions orders of magnitude faster than a traditional time-marching scheme.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Time-periodic phenomena are frequently encountered in the
fields of physics, biology, chemistry, and sociology. Perhaps the
most well-known example is vibration, which is ever-present in
nature, and is essential to engineering design. In some applications,
vibration can be harmful, while in others, it may be desired. The
analysis of vibration involves capturing physics in the language of
mathematics, resulting in the formulation of a dynamical system.

Natural oscillators are often represented as nonlinear dynami-
cal systems, which in general are too complex to solve analytically,
and must be analyzed experimentally or through numerical simu-
lation. This is particularly true for multiphysics problems, which
entail simultaneous treatment of various physical phenomena that
can occur on a wide range of scales. Fluid–structure interactions
serve as an excellent example and are currently gathering substan-
tial interest in industry and academia.

The traditional approach to solving nonlinear dynamical
systems begins with a spatial discretization of the governing equa-
tions, which is typically accomplished using the finite element
method for structures, followed by a temporal discretization based
on a finite differencing scheme. Initial conditions are specified for
the fully discretized equations of motion, and the solution is incre-
mentally advanced forward in time. This technique is known
throughout the literature as time-marching.

The downside to using time-marching methods for time-peri-
odic problems is that they include a transient response in the solu-
tion. In many cases, only the steady-state solution is desired. When
many degrees of freedom (dof) are involved, the computational
time required to achieve a steady-state solution can become
excessive.

The harmonic balance (HB) approach is a computationally
efficient alternative to time-marching methods for solving time-
periodic problems. The approach is based on Fourier analysis,
and to its advantage, only includes the steady-state solution. Thus,
any computational expense associated with a transient response is
completely avoided.

The first formal presentation of the HB method is usually
accredited to Kryloff and Bogoliuboff in the 1940s [1]. Throughout
the years, many variants of HB technology have emerged. As a
result, the technique has been applied to myriad problems in sev-
eral fields, especially nonlinear circuit analysis [2,3] and nonlinear
dynamics [4–8]. A detailed discussion on the many variants of the
HB methodology can be found in Dimitriadis’ continuation study of
higher-order HB solutions [9].

The high dimensional harmonic balance (HDHB) method is a
novel modification of the classical HB approach, and was first
presented by Hall et al. [10,11]. Instead of working in the Fourier
domain, as with the classical HB approach, the HDHB method casts
the problem into the time domain. Rather than solving for Fourier
coefficients directly, the field variables are discretized in time for
one period of oscillation and are solved for numerically. This
modification allows for straightforward implementation of the
HB methodology into large-scale computational fluid (CFD) and
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structural dynamic (CSD) codes, which already contain standard
time-discretization schemes.

One shortcoming of using the HDHB approach for solving non-
linear systems is that it has a tendency to produce nonphysical
solutions in addition to the physically meaningful ones that are
sought. This effect is known as aliasing. In a comparison of the
HB and HDHB approaches for a Duffing oscillator, Liu et al. [12]
determined that aliasing terms arise due to the treatment of the
nonlinearities in the governing equations. An aliased solution can
be identified by a lack of convergence in the Fourier series and
can lead to numerical instability.

LaBryer and Attar recently proposed a framework for dealiasing
the HDHB approach through judicious filtering of the field vari-
ables [13]. They demonstrated that the aliasing terms can be com-
pletely removed, or drastically reduced, by filtering in the
frequency domain. The drawback to frequency filtering is that
repetitive coordinate transformations are required, increasing
computational expense. As an alternative to frequency-domain fil-
tering, they showed that filtering in the time domain can produce
similar results while reducing the computational burden.

In this paper, we will present the filtered HDHB methodology
and demonstrate how it can easily be implemented into an existing
finite element solver. The authors have successfully incorporated
the technique into an in-house finite element code named ATFEM.
To the authors’ knowledge, this marks the first application of the
HDHB approach to finite element software.

To showcase the capabilities of the HDHB finite element solver,
we will present solutions for a suite of nonlinear dynamical prob-
lems that relate to the field of flapping flight. First, we investigate
the response of a plunging string, which is approximated to be a
one-dimensional continuum. Studied next is the motion of a flap-
ping dragonfly wing using two-dimensional plate elements. Final-
ly, we investigate the stresses in a three-dimensional continuum
airfoil undergoing forced oscillations.

2. Numerical method

The solution technique presented here is valid for any nonlinear
time-periodic system governed by second order partial differential
equations (PDEs). PDEs of a different order can be treated in a sim-
ilar manner. Following a spatial discretization, which can be done
using the finite element method for structures, the general form of
the resulting ordinary differential equation (ODE) is

M€uþ C _u ¼ fðu; tÞ; ð1Þ

along with the associated initial conditions, where u(t) is the dis-
placement vector, t is time, and f is a vector containing the external
forces and internal restoring forces, which may be nonlinear. In
structural dynamics problems, the matrices M and C typically rep-
resent mass and damping.

The basic concept of harmonic balancing is to find time-periodic
solutions for u(t). The method proceeds by assuming that the solu-
tion to Eq. (1) is smooth and periodic in time with period T = 2p/x,
where x is the fundamental frequency. Consequently, the field
variables can be expanded in a Fourier series:

uðtÞ ¼ û0 þ
XNH

k¼1

û2k�1 cosðkxtÞ þ û2k sinðkxtÞ
� �

; ð2Þ

fðtÞ ¼ f̂0 þ
XNH

k¼1

f̂2k�1 cosðkxtÞ þ f̂2k sinðkxtÞ
h i

; ð3Þ

where k is the wavenumber and NH is the number of harmonics re-
tained in the expansion. The total number of terms in each Fourier
series is NT = 2NH + 1. The only task that remains is to solve for the
Fourier coefficients, which can be done using the HB method.

If the smallest timescale associated with the periodic solution of
Eq. (1) is given by s, and NH is chosen such that 2p

NHx � s, then the
resolution error (or harmonic approximation error) is zero. The
simulation can then be considered (in CFD terminology) a direct
numerical simulation (DNS). In practice, the timescale s is un-
known, and harmonic approximation error is present. Additional
errors associated with approximating the PDE with a finite number
of dof (projection error) and the inexact treatment of spatial deriv-
atives (numerical error) are also present.

2.1. Classical harmonic balance method

The classical HB method provides a way to determine the Fou-
rier coefficients in Eqs. (2) and (3). The Fourier series are substi-
tuted into the governing equation of motion (1) and a Galerkin
projection is performed with respect to the Fourier modes. If we
assume (for ease of derivation) that the mass and damping matri-
ces are diagonal, we can write the following system of equations
for the Fourier coefficients:

x2A2 bQ MþxA bQ C� bF ¼ 0 ð4Þ

with

bQ ¼
û0

1 � � � û0
NV

..

.
ûn

i
..
.

û2NH
1 � � � û2NH

NV

26664
37775; bF ¼

f̂ 0
1 � � � f̂ 0

NV

..

.
f̂ n

i
..
.

f̂ 2NH
1 � � � f̂ 2NH

NV

26664
37775;

A ¼

0
J1

. .
.

JNV

266664
377775; Jk ¼

0 k

�k 0

� �
;

where the subscript denotes the dof number, the superscript de-
notes the Fourier mode, NV is the total number of dof, and NH is
the total number of Fourier modes. The HB solution array bQ con-
tains NTNV terms, which represent Fourier coefficients for displace-
ment at each dof. If the restoring force contained in bF is linear,
solutions for the Fourier coefficients can be found analytically
[12]. For the nonlinear case, solutions must be obtained numeri-
cally. As an alternative, solutions for the harmonic amplitudes Ak

i

can be found, along with the peak amplitudes Ai, where

A0
i ¼ û0

i ; Ak
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
û2k�1

i

� �2 þ û2k
i

� �2
q

; Ai ¼
XNH

k¼0

Ak
i : ð5Þ

The classical HB method generates NTNV analytical expressions to
solve for the harmonic amplitudes Ak

i . Implementing this approach
for large-scale nonlinear dynamical systems can become cumber-
some, especially when many harmonics are retained. Expressions
for the nonlinear terms must be developed as a function of the
Fourier coefficients, which are often complicated to derive, and do
not exist in standard time-marching codes. In order to circumvent
this difficulty, a novel extension of the classical method will now
be outlined.

2.2. High dimensional harmonic balance method

Hall et al. [10,11] first presented the HDHB method within the
context of CFD. The basis of the approach is that instead of working
in the Fourier domain, the problem is cast into the time domain.
This modification allows for straightforward implementation into
large-scale CFD and CSD codes. Expressions for the nonlinear terms
in the governing equations do not need to be rederived with re-
spect to the Fourier coefficients. Instead, the Fourier coefficients
are related to time domain variables through a discrete Fourier
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